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PREFACE

In modern engineering, particularly in aircraft, engines, ships, etc, that is
wherever it is necessary to reduce the weight, thin walled structures, the main
components of which are thin bars, plates and shells, are widely used.

The characteristic property of these parts is their flexibility, i.e., their
relatively small resistance to bending and torsion; therefore, when deformed under
load, the displacements of the elements of such structures are comparable to
their linear dimensions. The classical theory of elasticity, in particular the
theory of shells, is based on the assumption that the displacements of points in the
body are infinitestimal and this enables one to neglect, within mathematically
strict limits, the squares and higher orders of displacements in comparison with
the first order. This so-called linear theory was dealt with by V. Z. Vlasov
/0.4, 0.5/, A.L. Goldenvaiser /0.8/, A.I Lurie /0.10/, A, Love /0.11/,

V. V. Novozhilov /0.15/, and others.

The theory of flexible bars, plates, and shells must be free of such geometri-
cal hypotheses. In this respect it is "geometrically non-linear”. Apart from this
it may be "physically non-linear" if the stress-strain relation of the body is non-
jinear. The basis of the general theory of elasticity which takes into account both
geometrical and physical non-linearity is given in V. V. Novozhilov's monograph
/0.14/, which also gives a rich bibliography of Soviet and foreign works (up to
1946 inclusive).

This monograph, the only one of its kind, deals only with the three-dimen-
sional problem of the theory of elasticity, barely touching upon the theory of
flexible bodies. We therefore thought it necessary to deal with the special problem
of flexible plates and shells in our monograph. Owing to the magnitude of the
problem, we tackled only the geometrical non-linearity.

The reader may find the theory of physical non-linearity in the well-known
monograph by A. A, Ityushin /0.3/ and in journals, all of them being based,however,
on the assumption of small displacements.

One of the most important problems of the theory of flexible shells is the
investigation of the stability of plates and shells. This problem is of interest to
us and therefore we have given it particular attention. We did not intend to com-
pile a monograph to replace the well-known work of S. P. Timoshenko /0.16/,
"The Stability of Elastic Systems® in which the simpler cases of loss of stability
of plates and shells, which are considered classical examples now, were adequately
treated. In many aspects, however, Timoshenko's book no longer reflects our
present state of knowledge in this field.

We hope that our monograph will largely fill this gap and provide a useful help
to undergraduate and post-graduate students in universities who wish to specialize
in the theory of elasticity, for post-graduatesin other engineering faculties, and for
engineers and scientists who have to design structures and calculate strength and
stability.

We have dealt with the general non-linear theory of shells without using the
tensor calculus, unlike a number of Soviet and foreign papers dealing with this



theory /0.1, 0.7, 0.12, 0.18-0.22/; nevertheless i is possible that some parts of
the book will be difficult for the beginner because tie problems dealt with are very
intricate. Such parts are marked bya star * atthe be ginning and the end of the text and
canbe omitted atfirst reading*, The greater partof t1e book, sections 25-65, deals with
the application of the general theory. For the conv:nience of the reader who is
mainly interested in this part, section 25 contains .1 short summary of the preceding
material, insofar as it is indispensable for an understanding of the following,

In selecting the material for this monograph, preference was glven to those
problems which the first of the authors and his students and co-workers had dealt
with for 20 years. In dealing with the material, great attention was also given to
the contributions of many other Soviet and foreign scientists. We had to refer very
often to the monographs on investigations by 1. G. Bubnov /0.3/, P. F, Papkovich
/0.17/, Wei-Tsang Chien /0,19/, and others. At the end of the book a bibliography
of references is given; the numbers of the relevant chapters are shown by Roman
numerals. Monographs and general literature are marked by the prefix "0".

Sections 14-23, 25-26, 35-62, were written ky Kh, M. Mushtari who also
edited the book as a whole. Sections 2-13, 24, 63-35 are by K. Z. Galimov and
sections 27-34 by 1. V, Svirskii.

The following members of the Kazan' Branch of the Academy of Sciences of
the USSR have given valuable help in compiling the material for the monograph:
M. S, Kornishin, A.V, Sachenkov, R, G, Surkin, F, S, lsanbaeva, N.I, Krivosheev,
and N. S, Ganiev to whom the authors hereby wish to express their thanks.

Finally it should be noted that we do not deal in this monograph with the
theories of non-isotropic and laminar shells, suppo-~ted shells or the dynamic
problems of the theory of shells. As these are prollems of a specific kind, we feel
they should be dealt with in a special monograph so as to avoid superficial treat-
ment of the subject,

Inst:tute of Physics and Engineering
Kazan', February 1956 of the Kazan' Branch of the
Academy of Sciences, USSR

* In parts covering several pages every page carries the star at the beginning,
In the Russian original these parts are in small tyse - Translator,



§ 1. Fundamental Concepts and Notationg*

A body is called a shell if it is bounded by two curved surfaces, the distance
between them being small in comparison with the other dimensions of the body. The
geometrical locus of all points equidistant from the two boundary surfaces of the
shell is called the middle surface. The distance between surfaces, measured
normal to the middle surface, is called the thickness of the shell. In all cases,
except where stipulated otherwise, the thickness of the shell is assumed to be
constant.

Notations for the description of the geometry of defor-
mation of the shell.

s --Middle surface of shell before deformation;

R, = 1/k,, R, = 1/k, --the principal radii of curvature of the middle
surface o, i.e., the greatest and the smallest radii of curvature of the normal
gections;

a;, «, --orthogonal curvilinear coordinates, giving the position of a point on
the middle surface before and after deformation;

a, P --the same quantities for the case when lines of curvature are taken as
coordinate lines;

A, da,, A;da,, and correspondingly Ada, Bdf--line elements of the coor-
dinate lines;

€., €, m--unit vectors tangent to the lines a; and a; and the outward normal
to the surface ¢ which form a right-handed orthogonal triad (see Figure 1);

w0 —projection in the direction of the vector m of the initial displacement
which transforms a surface of simple geometrical form into a surface o9 before
the application of the load;

€9, €2, 2¢0,--relative elongations and shear corresponding to the above dis-
placement;

%9, »9, x??_ --changes of curvature and twist of the reference surface o caused

by the initial displacement which characterizes the surface a0
ul, ul, w! --the projections on the unit vectors €,, €, m of the vector of dis-
placement, due to a load carrying the surface a%into the surface ol;

ul, vI, w! —the same quantities for lines of curvature;

el, €], 2¢l,, i, x}, »},--elongation, shear, change of curvature, and twist of

the surface ¢® when transforming into surface ol.

When considering a single deformed state for a given load, one can omit the
index "I" on the symbols ul,........ But if the equilibrium position ol is not stable
and a change to a new position of equilibrium o* is possible, then the additional
displacements, elongations, etc, which characterize this change are denoted by
vy, ..., % respectively.

* We give here merely a short list of some concepts and notations which will be
dealt with fully in the corresponding parts of the book.



We adopt the following notations for static quantities:

T{,, T,, T},= T}, ~Tensile and shear stresses of the middle surface o!, per
unit length of the relevant cross section.

Tf, Tzl, T,lz—the same quantities for lines of :urvature;

M}, M;z. My,= Mé, or correspondingly M,‘, M;, M}?--bending and twisting
moments per unit length of cross-section;

T,, ..., M;z-additional forces and moments caused by the loss of the stability
of equilibrium of the shell;

p -- density of normal external pressure on. the shell;

Pi» Py, t-external tensile and shearing forces applied to the normal edge-
sections of the shell. The positive directions of the forces and moments are shown
in Figure 2,

General notations

E and v --modulus of elasticity and Poisson's ratio of the material of the
shell which are taken to be constant;

K = I—-Et—vz—rigidity under compression;
D = Et3/12 (1 —v)--rigidity under bending, tlLe so-called flexural rigidity;

1, 2--Bymbol denoting that the other formulas result from the previous for-
mulas, by permutation of the indices 1, 2, and of the letters u, v;

The symbol ~ shows that the two quantities ire of the same order of mag-
nitude;

( ) Sat..) ( Y = al...) s . N
R T X I v abbreviatic ns for partialderivatives, used only
in places where they cannot be misunderstood;
ep --relative elongation at the limit of propo:-tionality of the material of the
shell; _
(a b] and ab--respectively the vector and scalar products of vectors a and b.

We shall agsume that elongations and shears are small in comparison with
unity, although the displacements and changes of curvature are of finite and even
of considerable magnitudes.

The bending of the shell is called medium wh-n the deflection is comparable
with the thickness of the shell, but is small compal ed with the other dimensions
of the shell. It is called large when the displacement is of the same order as the
length and width of the shell. In sections 2-19 of tiis monograph, the general
non-linear theory of shells is dealt with, without r:strictions on the degree of
bending; the other sections deal with the case of medium bending.

Let L be the characteristic dimension of the ihell (its width or its smallest
radius of curvature). The shell is considered thin ~vhen

t/ L~ &p;
but if

t/ L~ ¥e,,
then the shell is of medium thickness.

The subsequently described theory was in fac' derived for thin shells for
small deformations, by neglecting quantities of ordar ¢p in comparison with unity.



It can be used in many cases for shells of medium thickness but then the permissib-
le error is of the order of fg in comparison with unity.

In the following, the Kirchhoff-Love hypothesis is assumed, in which
the perpendicular to the middle surface before deformation remains perpendicular
to it also after deformation, and at the same time normal stresses perpendicular
to o are considered to be small in comparison with the stresses tangential to the
surfaces parallel to ¢. As in the linear theory, this hypothesis leads to an error
of at most t/L in comparison with unity*.

The non-linear theory of shells constructed without such a hypothesis was
given in a tensor formulation in the work by Wei-Tsang Chien /0.19/ and in a
linear formulation by N. A. Kil'chevskii /1.6/.

* See the papers by Novozhilov and Finkelstein /1.1/ and the papers by
Mushtari /1.2/.






Chapter I
THEORY OF SHELL DEFORMATION
§ 2. Some Considerations from Differential Geometry*

The Cartesian coordinates x, y, z of a surface without point or line discon-
tinuities can be expressed in terms of independent parameters a, and a, in the
form

x = f1(a1, a2), y=f2(a1, 32), z=fi(a1, ), (2.1)
where f;, f, and f; are continuous and single-valued functions of a; and a,.

Let a; = n.? = constant. Then equations (2.1) become the parametric equations
of the curve a; = constant which lies on the surface (2.1).

Giving a series of values to the parameter a,, we obtain on the surface a
family of curves a,= constant on which the parameter «, varies. We shall call
these a,-lines, Similarly the equations a,= constant determine a second family
of curves, the a,-lines. With the above hypotheses regarding the functions f;, f,
and f; only one curve of each family will pass through any point of the surface (2.1).
Therefore every point of the surface can be taken as the intersection of a, and a;
lines and the position of a point can be specified by the values of «; and a,. The
parameters «; and a, are called curvilinear or Gaussian coordinates of the point
on the surface, and the curves a; = constant are called coordinate lines (or curves)
on the surface.

Assume that ;, 3 k are unit vectors along the Cartesian coordinate axes and
T is the radius vector of a point on the surface (2.1); then

r=Ix+Jjy+kz
or, substituting for x, y, z from (2.1),
r=ifi+ifs+ kfs=r(a, @), (2.2)

i. e., the radius vector of a point on the surface can be taken as a function of the
parameters a, and a,. The expression (2.2) is the vector equation of the surface.
In the following we shall assume that the surface is specified by its vector equation
(2.2). We adopt the following notations for the partial derivatives of T with respect
to the coordinates a; and a,:

;,,sgé. (2.3)

=
1=
From the definition, _r—,l is the derivative of r with constant a,; therefore,

as o, varies, the vertex of the vector T will describe the curve a,. Therefore

the vector r, is tangent to the curve a; and the vector r, tangent to a,. Thus,

r,; and r,, lie at the given point of the surface, in the tangent plane. These vectors

* In this section geometrical formulas which are essential for what follows are
given, usually without derivations. Details on these matters can be found, for
example, in P, K, Rashevskii's book /1.3/,

,
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are called fundamental coordinate vectors of the sur:ace (Figure 1), or simply,
coordinate vectors.

We denote the moduli of coordinate vectors anc their scalar products as
follows

[Tai=Ai, {Fal=Az;, rarz=Aif1c08Y, (2.4)
where yx is the angle between the coordinate lines «; and a,. The quantities A,
and x are functions of the coordinates «; and a,. The unit vectors of the curvilinear

coordinates e, and §, are:

;x=_’—-3_=21- =1 (2.5)

Figure 1

The square of the distance between two infinite3imally near points (x, y, z)
and (x + dx, y + dy, z + dz) is

ds? w= dx? 4-dy? 4 d2? == | dr .
If T is taken to be a function of a; and a, we obtain

dr=rde; + F.adas.
Therefore,

ds® = Alzdllz + 2A|A] cos ldﬂ]dﬂ: + A:’daz’. (2. 6)

The expression on the right-hand side of the equation is called the "first
principal quadratic form of the surface". This form determines the infinitesimal
lengths, the angle between curves, and the area on tl e surface, i.e., it deter-
mines the intrinsic geometry of the surface.

To calculate the curvature of a curve which lie:1 on the surface, we have to
consider a "second principal quadratic form" of the surface. Let [ be a certain
curve on the surface, given by the vectorial equation r = r(s) where s is the arc-
length from a certain origin and T is the unit tangent to this curve:

= B (2.7



According to the Frenet formula, the derivative of this vector is

(2.8)

&%,
|
1J<|

where 1/¢ is the curvature of the line 7, and v is the unit vector of the principal
normal to this curve.

Substituting for T from (2.7) in (2.8) we obtain
e (Y Lor e da o (dn)
" —f.u(ds) +2””E'ds +"”(E) +
PP T i B
+ra o +",zds, (*)
Here and in the following F,ik (i, k=1, 2) are abbreviated expressions of the
second order derivatives of T:

Ory _ Ora _ 97
day  da;  daday

Let m be a unit normal to the surface forming a right-handed coordinate
system with the fundamental vectors r, andT,, i.e., the shortest rotation from
r, tor,; takes place anticlockwise, and let ¢ be the angle between m and v

(Figure 2).

Figure 2

The vector m is perpendicular to the coordinate vectors:

mri=0 (i=1, 2). (2.9)

If both sides of the expression (*¥) are scalar-multiplied by m, we obtain

cose __ byde? + 2bydada, 4 budsy® (2.10)
[ ds? '

where

bu=by=mru (i k=1, 2). (2.11)

The expression
by dae,? + 2b13da;da; - byaday?

is called the second principal quadratic form of the surface and the quantities b,



are the coefficients of the form. Upon differentiatit.g (2.9} with respect to a, and
taking into account (2.11) we obtain for the coefficieits b;, the expressions

b= —murp=—mury (i, k=1, 2), (2.12)
where

my=dmids, i=1, 2. (2.13)

Thus, one can see from (2.10) that the curvature of a curve on the surface
depends on the ratio dua:da, i.e., on the sense of the curve. From (2.10) one can,
in particular, obtain the curvature of the normal section. For this section, m
and v are either parallel {p= 0) or have opposite d:rections (¢ = n). Since a
'plane' curve always leaves its tangent in the direct on of vector v and one takes
its outer normal as the positive normalto the surfac:, wehave ¢ = n,

Thus we obtain from (2.10) the curvature 1/R of the normal section

L bude)d Dbgdades 3 bued! (2.14)
R Ayida? + 2A\A; co8 yda,day + Ag'doy’

From this, by taking a, = const and @, = const, we obtain the curvatures of
the coordinate lines «; and a,:

k,,=,%; ko = — b2 (2.15)
1

Through every point of the surface there are two normal sections at which
1/R reaches a maximum and a minimum, These arz called principal sections for
the particular point. The directions of the tangents lying in these sections are
called principal directions, and the corresponding curvatures

1 1

‘ = == —

L an
Rmax Ry Rumin R:

are called principal curvatures of the surface. The principal directions are per-
pendicular to one another. The curves for which th: tangents coincide at every
point with the principal direction are called the lines of curvature of the surface.
Through each point of the surface there pass two mi tually orthogonal lines of
curvature. If one takes these as coordinate lines, then y = 90°,

* The expansion formulae for the second order lerivatives of the radius vector
T with respect to the axes of the principal trihedron {F,,, T,;, m} are:

raa= T ra+ Ihra+ mby (4 k=1, 2), (2.16)
where 7, are Christoffel's symbols of the second kiad,

Aly=Ait+ Amctgx, Asnsing = Ai2- (Ajcosx), ,
A yasiny = Az1 — (A, cos X)a A, sin” 3Ty = Air — cos yAa, (2.17)
Aisinylhe=— A (i £ 0.

Let us calculate the derivatives of the unit vectors of the orthogonal coordi-
nates (y = 90°). If one substitutes in (2.16) the expression (2.5) for r,; and uses
the formulas (2.17), one obtains, for y = 90°

—

AR = — A2 — AAgkym: A, = €Ay, — AAkgm, 1,2 (2.18)

10
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+* where
by = — byl AAL. (2.19)

Here and in the following the symbol 1, 2 shows that the formulas which are not
fully written down derive from the permutation of indices 1, 2.

For the derivatives of the unit vector m we have
M= — b, — b, (2.20)

where b are the expansion coefficients

A; bt sin® y = A; (A3 cosy — &),
Ab3sin? x = A, (#; cos Y — k). (2.21)

For orthogonal coordinates we obtain from (2.19) and (2.20):

2
my=A Y by, b A= — Ay, (2.22)
$=1
With respect to the lines of curvature the latter formulas are:

— A 1
m,,:;:q, b“:-R_;‘ bl b3 =0, (2.23)

The coefficients of the first and second quadratic form of the surface are
not independent but satisfy the differential relations of Gauss and Codazzi. The
Gauss formula expresses the total curvature of the surface

L buba— bl (2.24)
RRy  (AA;5in x)t

in terms of the coefficients of the first principal quadratic form of the surface and its
derivatives:

b:,—bub,, _ X +i A2,1~maxA|.z+i Al.z—cosxAm: (2.25)

AyA;ysin x dayda;  Oay A siny da, Agsin x

the two Codazzi relations are, in an arbitrary coordinate system
Buna — b+ by (Ml — %) — bully + b =01, 2, (2.26)
where rl, is given by (2.17).

In case of orthogonal coordinates the expressions (2.25) and (2.26) simplify as
follows:

D (14N @ (1 dAN_ 2 _ .

)+ 5 (5 3o = A 8y — b

da, \ A, ds; Az day (2.27)

.
(Arkiz)y — (Ajkn)a + KAy, + BnAla=0 l,’_2 *

Let us consider curvilinear coordinates in a three-dimensional space. The
position of a point P can be specified by the curvilinear coordinates a;,; and a, on
a surface ¢, and a third coordinate z perpendicular to this surface. Let us take,
as before, T as the radius vector of a point M on the surface from an origin 0.
Let ¢ be the radius vector, taken from the same origin,of a point P in space so
that, as seen in Figure 3, one obtains

p= ;(u,, d,)-]-za(a,, a3), (2.28)

where m is the unit normal to the surface at the particular point.

11



Figure 3

Differentiating with respect to a; and z we obtain the coordinate vectors at
the point P

P Mz, pa==dpfdz=m (i=1, 2).
Substituting for m,; from (2.20) we obtain, in general coordinates

Pa=ra(l — biz) — raiz;

- - _ z _ 2.29)
pam=ra(l — b32) — rablz; pim=m. (

By substituting for m,; from (2.22) we find th: coordinate vectors in ortho-
gonal coordinates:

P A (14 kuz) &1+ Aikzes;
p,am= As(l 4 k232) €3+ Askisze,. (2.30)

For the lines of curvature the latter assume t1e form

= T (1 + kuz). (2.31)
In all these formulae r,; are the coordinate v:ctors of the surface o; there-
fore
Pumm=0. (2.32)
We set
gn=pspn (i, k=1,2) (2.33)

We denote the unit vectors of orthogonal coordinates by E}
e_fzp‘l/Hil Hi =|;l”' (2.34)

Substituting for g,; from (2.30) we obtain
Higr = A (1 + kuz) €1 + Aik szes;
ity = Ar(1 + knaz) €1+ Ak 2z,
where €, and e, are the unit vectors of the orthogon:l coordinates on the surface .

12



From this we obtain the formulae for Lame's coefficients H,

Hi=AV (1+ kuzP 4 k2 1,2,

—

or, by expanding'these expressions in a power series in z and neglecting the
squares and higher powers of the quantities k;;z we obtain:

Hi= A;(1 + kuz).
dinates,

(2.35)
In this approximation we obtain, for the unit vector of the orthogonal coor-

€ = e +kiazer, € == &y -+ kuze).

(2.36)
In case of non-orthogonal coordinates a, and a, the square of the differential
arc-length of a curve in space is:

ds? = ' d;" = gudal’ + 2g|:d¢1d¢x + gndﬂg’ + dz*.

(2.37)
Substituting for g,; from (2.29) we obtain the formulas

Gum=A2(1 4 2kuz) i=1,2, (2.38)
[:43] =A1Az(COS X+ 2k;22). (2.39)
For the coordinate vectors of orthogonal coordinates (in case of an orthogonal
system) we write

H, [F,l ;l-l = P,ZHI,

- Hi[p,sm}=p,H,,
[po1 p22) = mH H,,
and for the coordinate vectors of the surface

(2.40)
Arlrm)=—rad;,  Ai|Fam)=rF,A,,
Ir ra] = mAA,. (2.41)
From this we obtain for the unit vectors E,, Ez, and m the formulas
Ex I_ll—]— — e, [E_: I;_l-] -;,, [E; e_’_,]: m, (2.42)
e1 e ml=1.

13



$ 3. Deformations of a Sarface

Let o be an undeformed surface referred to orthogonal coordinates. We as-
sume that the deformation of the points of this surface causes a displacement char-
acterized by the vector v = v {a;, ;). The surface o turns into a new surface o*
which will be called the deformed surface. We shall specify a point of this surface
by the same values of the parameters a, and a, by which we specified the corres-
ponding point on the undeformed surface, but in general the curvilinear coordinates
of o* will not be orthogonal. The radius vector r* of a point on the surface o*

will be
=74, 3.1)
where T is the radius vector of the point before defcrmation.

In the following, all quantities referring to the deformed surface will be
marked with anasterisk. The projections of the displacement vector v on the
(orthogonal) directions e,, €,, and m are:

Qy=UE, UgmTE, W=C-m. (3.2)
Consequently, the displacement vector may be expressed as
O == 0,18; + ey + wim. (3.3)
Here u, and u, are tangential displacements and w is the normal displacement.

By differentiating (3.1) with respect to a; and using the formulas (2.18) and
(2.22) for the coordinate vectors on o*, we obtain

,1 T=Adlten)ar +¢n¢a+ ”zm} (3.4)
.l- Ay {fnex +(1-+esn) € + -,m},
where
10w = 24
‘u—dlai.+A.A a—;‘-{-kuv,
=1y _ = 04 12
&3 = —A da, A:Ana‘l+ku’ }'—-2— (3.5)

o) g i‘ :—: — ki — Risity

The first principal quadratic form of the surfiuce o¢* has the general form

(ds*P = (As*P da,* 4- 2A,°A2* cos x*daidsn; + (As*) dayl. (3.8)

Here
PRENTHR (3.7
A A cosy® =r1Ta, (3.8)

where y* is the angle between the coordinate lines on o*, The differentials of the
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arc-lengths of coordinate lines before deformation are:
(ds) = Ayday, (dsh = Axday. (3.9)
After deformation they will be respectively
(ds*)y = As*day, (ds*); = As*das. (3.10)

Introducing (3.4) in (3.7) and (3.8) we obtain the formulas for the coefficients
of the first quadratic form of o¥;
(AP == A (1 4 201), (As*)f =4y (1 4 2e1), (3.11)
€05 x* = 2613 (1 + 2e13) 70 (1 4 2020) 'k, (3.12)

where we have introduced the new notations:

3
2'{n=-¢u+eu+'22u¢n+ml (@ k=1,2). (3,13)

Sl

The relative elongations ¢, and ¢, in the direction of the coordinate lines may
be determined according to (3.9) and (3.10) by the formulas:

—

a=(A —A): A =(1 4 2o)b— I =eu— g ek +... L2 (3.14)

If v is the change of the angle (initially 90°) between the coordinate lines, then by
neglecting the squares of quantities small in comparison with unity, we have:

cos x* == c0s(90° — 1} =sin Y=>7=>2013(1 — 811 —em). (3.15)

It may be seen from (3.14) and (3.15) that the quantities ¢, and ey;characterize
the relative elongations in the direction of the coordinate lines, y being the shear
angle between them.

Let us consider the case of small deformations, i.e., of deformations for
which one may neglect the elongations and shear in comparison with unity.
According to (3.14) and (3.15) we have:

g=rey, G, Y= 2.

Thus, for small deformations the quantities g;; are the relative elongations in
the direction of the lines a,and a,, and the quantity 2¢,;is the shear angle be-
tween them, We thus have:

AT=A(1+ ¢), AF=A,(14e)

The quantities &, and 2¢,, characterize the change in the dimensions of an ele-
ment of the tangent plane. Hence, they are called the components of the tangential
deformation of the surface,

In order to derive the expression of the components of the bending deformation
of the surface, we express the unit vector of the normal to the deformed surface in

terms of the displacement. The normal m* to the deformed surface ¢* can be
specified by the following formulas:

Aham* =[ra73).
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Here and in the following we ignore the elongation and shear in comparison
with unity in calculating the bending of the middle surface. If one substitutes for
r%  from (3.4) and uses the vector products (2.42° one obtains for small deforma-
tions

m* = e\E\ + e:F: +mi's, : (3.16)
where the following new notations have been introdiced:

Ey=eio;+equy — (1 +€11 - en) o,

El=(1+€n)(l-f-ezz) - € 2€3. (3.17)

To clarify the meaning of the quantities e;,, m; and E;, we form the scalar
products of (3.4) and (3. 16) with e; and m. Then, for small deformations, taking
the equalities e e =1, ele =0, elm 0 into consideration we obtain

cos(rie)=1-+en cos(rie=en (£k), i k=12
€0s (;: m)=a;, cos(m*e)=E;, ¢ )S(E‘?"l): £,

Therefore, the parameters ey, oy, E;, E; characterize the angles of rotation of the
coordinate vectors r,; and m in the process of defcrmation. For the unit vectors
e*; and e*; of the coordinates of the deformed m:ddle surface o* we obtain the
following formulas for small deformations (3.4):

=(1 +en)e +€|z;:+°>1;ﬁ.

- - i . (3.18)
" == 231811 (1 -+ €32) €2 4 w.m,

gince

€ =r /A" = rifA(l + e} = Fi/ALL

Let us express the unit vectors of the coordir ates of the undeformed shell
€, and m in terms of the unit vectors e*;, and m*. By vectorial multiplication
f (3.16) and (3.18) by €; we obtain:

mre=E, e*ei=I1-4eu, erer=en.
Setting here
€= agi* + fe;* + ym*,
we obtain the coefficients
sa=]4eu, famen, y=.7,,

since the vectors €*; and %, are mutually orthogonal if we neglect the elongation
and shear in comparison with unity; furthermore, iccording to the Kirchhoff-Love

hypothesis e * | m*, We thus obtain the inverse r+lations

El“(1+¢u);|‘+e";1'+l'nﬁ'. (3.19)
€= eue,” + 1+ en)gg‘ + Lm*,

By setting

r7l =I1;1" + plgz' +1IE“

16



we obtain for the coefficients
a=em, Ppi=e&'m, n=mm
by substituting for e*; and m* from (3.16) and (3.18) we find

ay =@, ﬂ,:m;, "1=E).

Hence we obtain
M= e*0; + er*ay + m*Es. (3.20)

* Differentiating (3.16) with respect to a; and using the relations (2.18) and (2.22),
we obtain for the derivatives of €; and m,; the formulas:

m' = A (L + eiEn + mEn). (3.21)
where

| 06, E; 0A, | 98, E, 3A —
= T = e By Ey Fam = e et = e RpFy 1,2,
£y, 05, T a4 o T Ry Ly 12 41 30, A Ay dag + RiaEy i
I 0F, 1 Jf,
=—— - — & = = = g - .
® =0 e, LN €y En Ax 90 Rpky - Risf,

The coefficients of the second principal quadratic form of the deformed surface
are expressed by formulas similar to (2.12):

b=y = —mr (3.22)
By substituting for m#*,; from (3.21) and for r*,, from (3.4) we obtain* since
the trihedron ey €, m is orthogonal

k=0 +ep) En + enEn+ oiEin

ki =enLn + (1 + en) B + mEin (3.23)
To simplify these formulas we note that the parameters ey, o, E,, Ej satisfy
the following algebraic identities:

E (1 4 ey) + 265 + Exo, =0, E(1 + en) + enFy + Egen =0, (3.24)

which follow from the equation ¥#; m* =0on substituting for r#%;and m* from formulas
(3.4) and (3.16).

To calculate the changes in curvature we neglect the elongations and shear
in comparison with unity, so that the following identities are valid

Loy — E3(1 +ep) mwy Eyyy— 0 fo= —vy 1,2
. (3.25)
(+e) Ey—wEy =l 40 1.2,

which can easily be verified by replacing E; and E; by their expressions (3.17)
and then using the formulas (3.13). On substituting (3.21) in (3.23) we obtain

A8, =0 F e Evy + enFra + wifay + A7 + ) By~ enf)) A +
+ A o) Es-— 0 £i] Ry - (00 Es — w0, £4) Ak
* For general coordinates these formulas were obtained in /0.7/ and for the
lines of curvature in the monograph of V.V, Novozhilov /0.15/. They
were given earlier in a slightly different form by Kh. M. Mushtari /1.4/.
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* further replacing the brackets by their approximate expressions from (3.25) and by
again neglecting the elongation and shear in compserison with unity, we have

A1k;1 =(1+ en) Eyys + b + 0165 — A‘;Am wy -+
+ kA (1 + o) ~ Akger,.

By differentiating the first identity of (3. 24), we find:

(I + &) Ery + euEay + 0, F5y = — Eveyy, — Eyeyyyy — Esuy,, |

This gives for the coefficients of the second principal quadratic form the
expressions

ARy =— Eeny,, — Eenq — Eguy, — At Ao+ Ak (1 4 ) —
— ARyaey 1_ 5,
AJI;-; = — Evtn — Extnnn — Byogy + A5 Az w0 + Akt + 6y) — (3.26)
-
= Ak ey 12 %
Pl

Let us now consider the components of the bending deformation. The quan-
tities e;; describe the change in the dimensions of an element of the surface in
deformation. These are, however, insufficient to define the form of the element
owing to the possibility of twisting; we shall characterize the "twist® of the
element by changes in the curvature of the coordinate lines @, and a, in the process
of deformation (henceforth denoted by x;;and x;,) and by changes of the torsion
of the surface, x;,. The latter occurs through twisting of the coordinate lines in
the tangent plane of the surface.

Therefore, we take the following quantities t> be the components of the bend-
ing deformation:

1 1 1 1 N
Ayp e — e, Xy IS g — e Xy ==y Ry — Ry (3.27)
R, R, R, R, ’
where — s -1 and 7;7, *'.are the curvatures of th, coordinate lines before and
2y o e, e
after deformation. For smaller deformations
1 by “ 1 ":‘u -
——— o = — ~2t =Ry, .
7 = y: ki, R 2 2 (3.28)

On substituting these expressions into (3.27) and using (3.26), one obtaing the
formulas for the parameters of curvature

1 de, de duw, w, 04
— k1e1s — Fia ,,_(E_“ E,%u g oo _ e 94
X311 11822 — K126 n 1‘%1 + :dcl adu. A I,
1 9 ! d
X2 == Ra€n — Ruey — A—<Ex a:J +E; ,?',—f-fla%')—{— (3.29)
1 1 1 1
Ad do L

whereby xj; = %31, although there are different expressions for these correspond-
ing to the different expressions for b*, and b*,,.

When deriving formulas (3.29), the quantities bikejn were neglected because
they are small in comparison with unity.

The components of deformation of the surfaci: gy and yy, satisfy three differ-
ential relations which are called the conditions of continuity [conditions of compa-
tability]. They are obtained by subtracting the Gauss-Codazzi relations for the
undeformed surface from those for the deformed s rface. If one substitutes the
following into Gauss's formula (2,25) for the deforried surface,
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cos y* =261, singte=1, Aft= A1+ ) (3.30)
—siny*im —xi= 20y, biv=bu— Aidwun, (3.31)

and then subtracts from it the formula (2.27) for the undeformed surface, one
obtains, for small deformations*

0 1 [oAwa _ 0Awa __ 0A 04
F [ da, e Moa, M oq J+
O T [Am _ 9Awa _  0A 04 (3.32)
a2 [ day da, P 73 ]
== A1A; (W1 — xiixa2 — %pikae — *azku -+ Dxazka).
* This is one of the conditions of continuity. We obtain two other conditions

if we subtract from Codazzi's relations for a deformed surface
by g —biay + 00 ( Hi—Fh) -t + Fhp=0 i__? (3.33)

the corresponding conditions (2.27, second equation) for the undeformed surface.
For this purpose, we first calculate Christoffel's symbols il for the deformed
gsurface. From (2.17) we obtain, using (3.30), the expressions

.
A T =AA, (+ Ads ) + 24804 5.
. 3.34
Adly=Ag o+ Ay g — 20dy g, ¢ )

L —
A P = Ay 24 (Ary) | e (A p— (A) 5 1. 2
!

If we substitute (3.31) and (3.34) in (3.33) and use (2.27), two further con-
ditions of continuity are obtained:

dAmy _ OApa _ 04 04
8a;, Oa, e Oay a Ja, +
+ (ki 4 111) (2lu %‘:—" — A %:—"')-{-
+(x‘,+k.z){4!|zgﬁ+A:N—”L;”’—)J+ (3.35)
day da;

Q

(ka2 - %az) [Q‘M’—l'—’-"‘Q(!u —!:2)244!- — Axi‘L‘]=0 1,2.
ds, dag day .,

It should be noted that in deriving (3.32), the products of the first derivatives of

the elongations and shears were neglected in comparison with the gecond deriva-
tives of the same. If on differentiating with respect to any coordinate, the de-
formations do not increase, products like By k' En,c BTE small quantities of

second order. But if the derivatives grow &3’ times with respect to the deformation,
as it happens in the zone of the edge effect, then:

-
k™~ Sp%p -

where &p is the maximum relative elongation in the limit of proportionality; the
symbol ~ shows that the compared quantities are of the same order of magnitude.
The second derivatives will then be of order

LT el i
whereas the products of the derivatives are

-
U7 BTN e TR

Therefore, one can neglect the products of the derivatives in this case as well. %

* The derivation of these relations in general coordinates is given in a paper by
K. Z. Galimov /1.5/. See also N. A, Alumyae /0.1/,
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§ 4. Deformations of a Shell
We shall refer the middle surface s of the undeformed shell to the orthogonal
coordinates «;,and a,. We specify the position of any point P of the shell by the
same Gaussian coordinates a;and «; and by the coordinate z perpendicular to the
middle surface. Then the radius vector of the point P is:
p=r+me, (4.1)

where r 1s the radius vector of a point on the midd e surface, m the unit normal
to the plane.

The coordinate vectors of the point P on the indeformed shell given by
formulas (2.30), and Lame's coefficients H; by (2.%5).

The square of the distance between two infinitesinally near points on the
surface o? parallel to the surface o is:

(ds?)* = H.\da\* + Hy'das* 4- dz?, (4.2)
As before, we fix the position of the point P, of the deformed shell by the
Gaussian coordinates a; and a, on the deformed middle surface o* and by the

coordinate z* perpendicular to it. For small defo:'mations one can assume z* =~ z
because that is equivalent to neglecting the elongation in comparison with unity:

zZ*=z(l4en)=2z,
where g, is the relative elongation in the direction of the normal m.
The radius vector of the point P, is:

Pe=7r+g, (4.3)

where u is the displacement vector of the point P. In the following, the gquantities
relating directly to the deformed shell or to its micdle surface o* will be marked
by an asterigk. Thedifferential arc-length at the pcint P, on the deformed shell is
given by the general formula (2.37):

(453 = g + 2giydandort gid I+ da. (4.4)

Here
g:l =T", ;.. ] (4 5)

and 61"‘ and 62* are the coordinate vectors of the p>int P4 of the deformed shell
which can be expressed by formulas similar to (2.2):

T2
Pa= Sl — 8 —ribz, o =m",

Here m* is the normal to the surface o*, r% and r% are coordinate vectors on o*%,
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and b*} are quantities which are calculated for the deformed surface according
to formulas (2.21). Let ud note that in deriving these expressions, as well as in
the following, the Kirchhoff-Love hypothesis is used (see § 1).

The arc-lengths of the coordinate lines at height z above the middle surface
are before deformation:

(ds?);? = Hiday, (ds*)2 = Hydas, (4.7)
and after deformation, according to (4.4):
(dsS)y == |/ glydar, (ds))s ==/ gpda. (4.8)

Hence, the relative elongations e’l and s; in the direction of the coordinate
lines o, and n, at the point P(a, «,, z) are given by

- (@ —(as) () — (2
@, @),

or, substituting from (4.7) and (4.8), by

lx'-(VgI,—Hx)iHl, 'z’-'(sz—Hz):Hx. (4.9)
The cosine of the angle x:between 0% and 9%, is given by

(4.10)

— -

.
; Pi P2 &

T Ve

where g*, are given by approximate formulas of the type (2.38) for the deformed
shell:

L = (AP (1 4 22), g}, = A}A; (cos x*+ 224},), (4.11)
K, = — b}, (AT A= — b JAA:.

The angle of shear between the coordinate lines a, and azlat height z from the

undeformed middle surface is denoted by 2¢}, i.e., we set 2g,,= 90° — x;. Then,
according to (4.10), we have:

cos == sin 2l =g/ V& -
Since for small deformations sin 2¢,= 2¢}, one obtains, considering (4.9):
262, = g/ HiHa (1 + &) (1 + &) =g}, /H\ . (4.12)
Thus, 2ej,= cosy} is the angle of shear and the quantities ¢} €; and &g, determine
the deformation of a surface element of ¢* which is at a distance z from the middle
surface ¢ and is parallel to it. The angles of shear ¢f, and 5;.3 are zero, because by

Kirchhoff's hypothesis ¢% m* = 0.

We shall express the components of deformation by the characteristics of the
deformation of the middle surface.

When calculating the relative elongations of the shell, one can neglect the
angle of shear between the coordinate lines in comparison with unity, because we
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assume that the deformations are small. Therefo:'e, we obtain by formulas (4.11):
VE, = A (1 + Kz) = A] + Ak, (4.13)

So that according to (4.9) by neglecting the elongations and the quantities k;z in
comparison with unity, we obtain

A+ Adz — A (L + ky2)

o = T — ey 2Zxi (4.14)

Similarly, according to (4.11) and (4.12), and assumingthat cos x* = 285, k¥ = Kyptxg,,
we obtain the angle of shear between the coordinate lines at the surface o’:
o ==y 42 (hia+ %2 (4.15)
And thus, for small deformations of a thin stell, the first approximation
formulas of Love (4.14) and (4.15) (see /0.11/) are also valid for finite displace-

ments.

* To end this chapter, let us consider the dispiacements within the shell. The
displacement vector is:

U=%—r
By substituting here ¢* =r* + m*z and ¢=r+ mz, we obtain:
U=v+z(m* —m), (4.16)

where v=r* — T is the displacement vector of point: of the middle surface of the
shell,

The unit vectors of the coordinatese and e} are given by (2.36), Denoting
the projections of the displacement vectors along the coordinates by U}, U% and
W2, we obtain:

UF=g"T., Uf=e"TU W' =mU-

Substituting here for U from (4.16) and for e} and €} from (2.36):

Uf=u + 1;‘71 + kgz (g + zm* 9—1) =u+ z (’;' ;; + kyyuy),

U suy+2(m*ea+ ko), Wi=w- z(m*m—1).
Further on substituting for m* from (3. 18) in the aliove expressions, we obtain
Uf=u +2(Er+ bta), Uif =tz + 2 (Es+ ki), Wr=w+2(8 — 1). (4.17)

Thus the Kirchhoff-Love hypothesis leads to a linear distribution of displacements
along the thickness of the shell, %
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Chapter II

EQUILIBRIUM EQUATIONS OF THE THEORY OF THIN SHELLS
FOR SMALL DEFORMATIONS AND ARBITRARY DEFLECTIONS*

§ 5. Egquilibrium Equations of the Theory of Elasticity
in Orthogonal Curvilinear Coordinates

The orthogonal curvilinear coordinates @y and a,will no longer be orthogonal
after deformation, In the following, when deriving the static relations we shall as-
sume that they are orthogonal by neglecting shear, small in comparison with unity.
But we shall not neglect the elongations (in comparison with unity) because in
many cases the derivatives of the elongations may be of the same order of magnitude
as the twists e, and u,of the coordinate axes during deformation. Neglecting this
fact can lead, as will be shown in Chapter V, to substantial errors.

Let us derive the conditions of equilibrium for an elementary parallelepiped,
cut out of the deformed shell and bounded by the planes a;= const and «;+ doy= const,
z = const and z + dz = const.

Here the o; have the same numerical values as before the deformation. We
assume that F is the body force vector per unit volume of the deformed shell, and
51 and Ez the stress vectors, applied to the surfaces a; = const and z = const
of the deformed parallelepiped per unit area,

The deformed parallelepiped is in equilibrium as a result of the following:

1. Stresses on the faces ay= const and a;+ o;= const:
—piddand pido + (pdef) s day (=1, 2),

where dolis the area of the face a; = const (the comma in front of the i signifies
partial differentiation with respect to a, );

2. Stresses on the faces z = const and z + dz = const:

~ pedet and pdet 4 (p.do* ) dz,
where do*is the area of the face z = const, and (E,do'),, =3 (p,do®)/ »z;

3. The body force FdQ, where d{ is the volume of the element under
consideration.

When the shell element under consideration is in equilibrium, the geometrical

* The contents of §% 5-7 for general coordinates were given in a tensorial form
in A L. Lurie's article /11.1/. The Eulerian and Lagrangian formulations of
the theory of finite deformations in general coordinates can be found in articles
by K. Z. Galimov, /11.2/ and /11.3f. The theory of finite deformations of
continuous media is also dealt with in the papers /0.21/, /11.4/, /11.7/,
ete,
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sum of all these forces is equal to zero:

(1—71 d"l).x da, 4 (}-Jz dot) s day+ (;‘dﬂ’)}, dz+ Fd2=0.

The areas of the faces of the deformed element in orthogonal coordinates
are respectively:

do' = Hy* daydz, do? = Hy*dadz, av* = Hy*H)*deday,
and its volume isdQ2= H *H* da, du,dz, where acccrding to (2.35), H* <A *(1+k* z).
For a thin shell the quantities k¥ z can be reglected, so that we can set:
Hr e AP = A (1 +w) (i==1,2).
Hence,

dot == Ay*daydz; dot = A *deydz;
dot= A" A day du; G2 = Ay*As* dasdardsz. (5.1)

If we substitute these expressions in the above cundition of equilibrium and drop
the common factor da;dagdz, we obtain the vector equation of equilibrium of the
deformed parallelepiped:

71 As)s 4 (P2 Ar*)s 4+ (P A*Ar® s + FAP A = 0. (5.2)

For equilibrium, it is necessary that the resultant moment of all forces acting on
the parallelepiped should vanish. Let us derive the vector equation of the moments.
We denote by ¢* the radius vector of the vertex P*(q, 1, z) of the parallelepiped;
Bg*, 3''o* and 3'''g* increments thathave to be added to g* to determine the radii
vectors of the other vertices of the parallelepiped, that is, the displacements

from the point P* to the other vertices

3';‘: E:d“l, 8";‘—;;[16;, 5';‘: m* dz,

Here m* is the unit vector of the z* axis of the {eformed shell. If we take the mo-
ment of the stresses acting on the faces a; = corst and a;+do,= const with respect
to the center of the parallelepiped, we obtain

L 45 o] + 205 it + () de) = ipilavd,

Here, the fourth order quantities in the coordinete differentials were neglected.
The moments of the stresses acting on the other faces will be [6"5 p,} da*da,

and [f* §,) do’dz; the moment of body force wil be a fourth order infinitesimal,
which we neglect, Thus, the equation of the mo nents of the surface forces, after
cancelling daydaydz, will be

ooy pil A3+ [ps 2] AT+ [m*p: ] Ar*As® =0 (5.3)

The stress vectors p; and p, can be resolved a.ong the coordinate axes of the
deformed shell*

=il = pil A, = palAs,  m* (5.4)

*  Although z* = z, z* will sometimes enter instead of z. Then it means that
the segment z is taken in the direction of m.
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are expressed as follows (Figure 4):

Figure 4

_ e —pe —
P1 ==y €] + 913 € + 0. m*,

pz=°:1-¢’|”+°nz§‘+ 511;1', (5.5)
Pz =9z ef‘ + °zz_3;.+ Ozz ’;i..

Let us prove that the components of the stresses are symmetrical:
%2 = 931, 91z ==0z, Opr=0n. (5.6)

On substituting (5.5) in (5.3) we obtain:
('57'3?1 (Ux: - °n)+ [?7' ;l'] (°|: -_— °:|) + [2?5*] (92: — %22} = O,

from which equations (5. 6) follow, since the coefficnents of the vector products
must vanish,

25



§ 6. Forces and Moments. Reduction of Stresses and
External Forces to the Middle Surface of the Deformed Shell

In order to derive the static relations of the theory of shells, let us take an
element of the deformed shell which is cut out by the normal cross-sections
a, = const, a; +da; = const and bounded by the surfaces z = & t/2 (Figure 5).

Figure 5

Here q, are the Gaussian coordinates on the deformed middle surface of the
shell and z the coordinate perpendicular to this surface. The same coordinates a;
and z give the position of the point P*¥ ( a;, a;, z) of the shell, but the unit vectors
of the coordinates of the shell will be e and m*¥. We denote by K, and ﬁz the
resultants, (per unit length of the coordinates «; and «; of the middle surface) of
all forces which act upon the surfaces a, = cons: and «;= const. K, and K, are
the internal forces in the shell. To calculate these, let us assume p1 and p2 to
be the stresses acting on strips of the faces ay = const and a3 = const. As the
areas of the strips (of height dz) at the distance z from the middle surface are
respectively A, * dapydz and A; * d e; dz, the fcrces on the strips of the faces
a; = const and a, = const will be p,A%, da,dz and p,A* dadz respectively.

Therefore, the resultants of all forces wh:ch are acting the faces a; = const
and ;= const of the element of the shell are
12 ¢2
f;nqz‘ da;dz and f;'.:/h’dmdz,
B i

Dividing by the arc-lengths A, *d a,and A, *da ;of the coordinate lines q; and «,
on the middle surface o*, we obtain:

42 12
Rl=f;xdl Ez= r;:dz- (6.1)
i "2

Let us calculate the principal moments of internal forces about a point on the de-
formed middle surface., For the force actingon a ntrip of the face a;= const about a point
on the middle surface it is the vector product {m¥, pyA,*da,dz], as the radius vector of
this force is M*z., The principal moment of all Internal forces acting on the face
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u2
@, = const is the integral f[ﬁ‘z, PrAs* dag] dz. Dividing this by the arc-length A, *da,
we obtain: ~yz

"2
f {m*z, py) dz.
—~t

Thus, the principal moments ﬁ, and ﬁz of the internal forces on the faces a; =const
and a; = const per unit length of the coordinate lines ajand ajon the middle
surface o* are:

42 n
M =f[ﬁ‘z, pldz, M, =f[';l—*t, P2 dz. (6.2)
e ™

Thus, the internal forces acting on the lateral faces a;= const of an element
of the shell are statically equivalent to the force K; and the principal moment M;
acting on the coordinate lines a; = const on the deformed middle surface.

The external forces acting on the shell are also reduced to the middle surface,
Let E(\‘) and p, 3 be the external loads per unit area which act on the boundary
surfaces z = t/(Z and z = —t/2, and F the body force, per unit volume of the shell.
Let us find the resulting principal force and principal moment of the external
forces. Since

Gc)l-ﬂ'z =;(+] 1 (;z)z——rn == - ;(—) » ;'2 = ;"l

the external loads on the surfaces z = + t/2, per unit area of the middle surface,

are
(6.3)

- 2=
‘l

2 — (2

The resultant of the body forces acting on the element of the shell is

2 7]
Fdordz = f F Ag* As* day da, dz.

—~2 —2
On reduction to unit area of the middle surface, this becomes

mn
Fdz.

Adding this expression to (6.3) we obtain the vector:

52

+dez. _ (6.4)

X=7 '
i

2 (2

Therefore, the vector X is the principal force of all given external forces
reduced to unit area of the middle surface, X is called the external force acting
on the shell,

The moments of the surface forces PeAr* As* day day and Di-) A\* A;* da, da; about
any point of the element of the shell will be

[m* 42, P Ar* As* day daj} and [—m* /2, P Ar*As* day das).

Reducing their sum to unit area of the middle surface, we obtain:
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lm‘ Z, P:]

Zws — 2

The moment of the body force per unit area of the middle surface is

”e @2
f[i-'z, FlAs* Ar* do) dagdz : Ay* Ag* day du,=f[;;*z, Fldz.
“m —t2

Therefore, the principal moment of all the forces which act upon the element of
the shell reduced to unit area of the middle surface is

L=[m*2, pi

Hq2
Y] — .
’=_m+£1[m 2, Fldz. (6.5)

We term L the external moment acting on the shell. Thus the external forces
acting on the element of the shell are statically equivalent to the principal force
X and the principal moment L. The point of application of these vectors can be
any point on the middle surface of the element.

Let us express the forces and the moments in terms of the stress components.
If we introduct (5.5) in (6,1) and (6.2), we obtain

e
K= f {anefl + oues 4 aim™ dz,
2
My =f [E"z. cue +« Jes ldz.
p

Substituting for ¢/ in the above from formulas of type (2.36)
W=t +hnza—ea, G=a, (6.6)

where ¢; are the unit vectors of the orthogonal ccordinates on the deformed surface,

we obtain
2 42 g

I-<1 =-E: fﬂu dz +—¢;J‘ opds 4+ ’71.“ 0. dz ,
i Zm Zep

12 "2
M= [m e} f onzdz 4| *E;]fc,,z dz,
— 2 -2

We proceed similarly with vectors Rz and ﬁz Taking into account the expression
for vector products

Em=—a, [am)=e [6al=m" (6.7)

we can write the force and moment vectors in t1e following form:

RKi=el ThdeTh b m N, (6.8)
K=o To4& T -m*Nz;
M, =es M{, My, M, =& M —e1 M. (6.9)

In the above we have introduced the following notations:

0 n2 02
Ta= fdu dz, Ni* =f°udz, My = fduzdz, (6.10)
i o e

(5, k=1,2)
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Since the vectors T} e} + T 3 €35 lie in the tangent plane* of the deformed middle
surface, the forces Ty are called tangential forces: T*;;, T* and T*,;, T#*,,
are respectively the normal and the tangential forces acting on the cross sections

a; = const, and a, = conat; N* are shearing forces in the surfaces of intersection
a; = const, M*%,; and M*;, are bending moments and M*,; and M*;, are twisting
moments., Their positive directions are shown in Figure 6.

Figure 6

The external forces and moments may be written in terms of the projections
of the external stresses o, o, and o, and the body forces Fy, F,, F; in the
directions of the unit vectors of the coordinates of the shell:

e . —
Pz="ltef + 02 e +°zz m*,

- — e — (6.11)
F=F1£T‘-{-F: e§ +F.m*.
If these expressions are introduced into (6.4) and (6.5), we obtain:
X=Xlei+ Xaez + Xsm*, (6.12)
L=Lie;— Ly, (6.13)
where we introduced the following notations:
" 42 2 "2
X;-"iz == +fFle. Xx*=°u"_‘l +fF|dZ.
zm=—1)2 Yy 2= -m Y
M (6.14)
Lis=z0y, '__m+j’;zF.-dz, (i=1,2).

Here X¥* and L¥ are respectivelythe projections of the external force and moment
in the directions of the unit vectors of the deformed middle surface. X;* is the
projection of the external force on the normal to this surface.

§ 7. Equilibrium Equations for the Shell in Orthogonal
Curvilinear Coordinates

If we multiply the vector equation of equilibrium of a three-dimensional
body (5.2) by dz and integrate with respect to the thickness of the shell from
—t/2 to +t/2 we obtain:

(A; —K-I),l + (A:Rz),i-}- A: A;/-\' = (], (7.1)

where E‘ and X can be expressed by (6.1) and (6.4). Further, we take the vector product
of the equation (5.2) with m* z and integrate over the thickness of the shell:

2
S 1742 AGA + (2D + (Gestidi)a+ FA AT d2 =0 )
_"’

* [The word tangential (kasatel'nyi} used by the author may sometimes mean 'csculating' - Translator]
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Since

f (o2, (p1AD).) dz = f [7*z, FiAsladz — f 7z, udi] dz,

-~ “in

f[m‘z, (peATAZ) ] d2 = [m*z.

]

Fo ]

~ [t 5 ainia,
EA
- - —e
MyZ=p;— Ty,

thus, on introducing the left hand side of these equations in (*) and taking into
account the equation of moments (5.3) we obtain:

(ATK s+ (AiMa),2 + (IR A2 + [F2KG) AT+ LATA; =0, (7.2)
where M, and L can be expressed by (6.2) and (6.5).

Thus, the equations of equilibrium (5.2) and (5.3) for an element of the shell
considered as a three dimensional body are replaced by equations of equilibrium
(7.1) and (7.2) of an element of the deformed middle surface of the shell. In these
equations the required vectors K; and M, depend only on the two variables a, and
a,; therefore, our problem is now only a two -dimensional one instead of a three-
dimensional one,

Let us express the vector equations of equilibrium (7.1) and (7.2} in scalar
form. For this purpose we substitute for K; from (6.8) and for X; from (6.12) in
(7.1) and in the equation obtained we replace’e} and m* by their expressions
(2.18) and (2.22) for the deformed surface. Then we equate the coefficients of
e} and m* to zero.

If, in considering the equilibrium of the shell element, we can neglect the
displacement as small compared with unity, we can use the formulas for orthogonal
coordinates:

Ajeli= — Al: € — mAIAGD; A=A 6 —
— AL, LZ (7.3)
M= A (khe + ke, (=1, 2).
With the help of these we obtain:

(A7)0 = (AiT2) 2+ ThAL: — ThAL + A (N2 +
+ Ny*kia+ X*) =0;

(A1T2)a+(AsTh). 4 TaA: — T Ala+ AiAz (Nakn+
+ Niksy +X3)=+0; (7.4)

(ANt + (AND2 — (Thkn + Tk + kiaTia+
4 k3T —X3) A la =0.

Thus, the vector equation (7.1) is equivelent to the three scalar ones (7.4).
In order_to write the vector equation of 1noments (7. 2) in expanded form, we

insert M;and L as given by (6.9) and (6.13). If we consider (6. 8) we obtain in a
similar fashion the scalar equations:
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(MM} + (A:sMn)a + MiArs — MiAs, +
+AA L — N)=0 1,2
Toe— T+ Miky, — MRS, — R, (M}, — ML) =0. (7.6)

(7.5)

Here we assumed A% =~ A, , because in calculating the variations of curvature
we neglected not only the shear but also the elongation as small (compared with
unity).

The sixth equation of equilibrium (7.6 is identically satisfied within the as-
sumed limits of accuracy. This ensures that the tangential stresses are conjugate:
612 = 63;. Thus, for six unknown forces T*u( and ﬁ;" and four unknown moments
M#*, , we have a system of five differential equations (7. 4) and (7. 5).

In order to ensure that the tangential stresses are conjugate with respect to
the thickness of the shell 6y,= 6,5, 0x= 0,5, one must add one more differential
equation to the six equations of equilibrium, which in orthogonal coordinates will
be as follows /0.8/:

2
Y (Thkn — Thkn) —3(Ma — My) =0. (7.7)

i=1

The equations of equilibrium (7.1) and (7.2) hold also for a shell of varying
thickness which is symmetrical about the middle surface and for which the equations
of the boundary surfaces are as follows:

z=f(am), z=— f(aa).

The principal forces and moments are defined by the equations

/ f
?,sf;,dz, /71,=[ [m*z, pildz. (1.8)
_.I —

§ 8. Boundary Conditions
Let us consider first the static boundary conditions.

The locus of the boundary points of the middle surface of a deformed open
shell shall be called the boundary contour C*. The ruled surface X * which is

formed by all the normals from C* to the middle surface will be called the
boundary section of the shell. We denote by n* the unit normal to C* in the plane
tangent to the middle surface ¢*; T* is the unit tangent to the contour Cx ;-

m* is the unit vector of the normal to o* at the points of the contour C*, We
consider the trihedron {n*, T*, m*} to be equilateral (Figure 7). We further denote
by K, and M, the elastic force and the elastic moment at the contour, per unit
length of the contour C*, and by T*, $*, N*, H* and G* their projections on the
axes of trihedron:

Kn = n*T* 4+ *§* + m*N*, (8.1)
M= n*H*J- *G*. (8.2)
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Figure 7

Here T* and S* are a normal and an tangential force, N* a shearing force, G*
and H* are bending and twisting moments at the contour. It is not difficult to exprea;
these quantities in terms of components of [principal} forces and moments. Actually,
using formulas from the theory of elasticity which express the stress on an inclined
plane with normal n* in terms of the stresses on areas perpendicular to the axes of
the orthogonal coordinates and taking into account that in our case i*m* = 0, we
obtain:

Ko = Kiny+ Kz 13, (8.3)

where n*, is the projection of the normal n* along the unit vectors e*,

* Let us expreas n¥* in terma of projections tj* of the vector T* along e*. If ds*
is an element of arc of the contour C* then we have, by definition

A A R YL

ds™ ds* ds*

= [r—‘, ;l'l = [;,‘rl" + &*”, r;’] =%t - ;,‘r,‘,

=

Here we have used (2.41),
Since F,?‘ = A *e*, it follows that
r‘»‘aA,‘;‘% =112 (8.4)
When one further resolves n* in the directions ef , then
MRS et = a — e,
Now taking (8.4) into account we obtain the rela'ions

o R S Y (8.5)

ot = A
mr=ut =4 s 2%

We denote the unit vectors of the undeformed ccntour C of the shell by T and n

and their projections along €, by tand n;. Le* us prove that for small deformations,
n* i n, t*: 7 although ni* = n;, 1*=7z;. If ds is an element of arc of the contour C,
then it follows from (8. 5) that:

da, day da,
q:A‘;-‘l. n‘=11,‘{—.s . n :-—Ald—;‘-

but when neglecting elongations, small’compared to unity, it is clear that A;* = A

i
and ds* = ds.

Thus for small deformations, the following relations are valid:
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nien, ey (8.6)
AN = atn 4 6, T =t Lot W (8.7)

We have the formula
My = Min,* + Mans* (8.8)

for determining the moment at the contour. If we substitute in (8.3) and (8.8) the
expressions (6.8) and (6.9) for K; and M; we obtain

_ LA, — 8.9
Kn = E(Z Tixea™ + m'M") nt, (6.9)
R (8.10)
Moo= 3 [m*ex"] Mians* = Y (er*Mis — e* M) ni*.
A {mal

Let us find the normal, tangential, and shear forces at the contour. By
(8.1)

T*=K,-n", S*= K. =", NT = Kn-m*,

or, considering (8. 9},

2
=Y Thnrn, S =Y Tanrw', N*=YNfas, (8.11)

i ® i R =1

where t*=7i*¢*. Multiplying (8.2) by 7* and n*, we obtain the following expres-
sions for the bending and twisting moments at the contour:

G* = Mat*, H*=M, n*
If for M, one substitutes here from (8.10) and uses (8.5), one obtains:

G* =Y [m*, &x*| Man™ = 3, Mani*ns®,
ko L (8.12)
H* =Y im*a*] Mipntn* = — 5 Mun ™.

i, & ik

Thus, integrating over the thickness of the shell, we have replaced the stress-
es acting on the contour of a thin shell by three equivalent forces T#, S¥, N*, 6 and
two moments G* and H* per unit length of the contour of the shell (based on Saint-
Venant's principle). So it seems that there should be five static boundary conditions
at the contour of the shell; these were formulated for the first time by Poisson:

=7 =% N*'=FN, =G, H*=H,

where the right-hand sides are the forces and moments given at the contour. How-
ever, it was shown by Kirchhoff and later by Thomson and Tait that the number of
static boundary conditions may be reduced to four. They proceeded from the as-
sumption that the actual distribution of the stresses at the boundary which gives
the twisting moment is of no great importance. Therefore the twisting moment
at the contour of a thin shell may be replaced by a distributed force of the type of

__‘1’;—*:—": per unit length of the contour C*. Thereby a certain redistribution of the
s

stresses near the boundaries of the shell is admitted, but, according to Saint-
Venant's principle, this replacement hag an effect only in the immediate neighbor-
hood of the boundary of the shell.
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Figure 8

Let us consider a portion of the contour C* in the neighborhood of the point
Cy; . We shall replace it by a broken line consisting of a great number of equal
segments (Figure 8). The length of each segment of the broken line may be assumed
equal (to a degree of accuracy of infinitesimals of higher order) to the length of the
subtended arc (€, = C,C, = ds*, GG, =G6y; the unit vectors of the segment and of the
tangent to the point C; coincide in the limit.

Let us place the points D; and D, half-way between the points C{, Coy, and
Co. C;. sothat D;D, = ds*. Let furthermore H* a* be the vector of the twisting
moment at the point D;, where n* is the normal tc the contour C* at the relevant
point (the direction of the vector n* is perpendicular to the plane of the figure,
taken towards the reader).

The resultant twisting moment H* n* dg* may be replaced, on the part

C,C, of the contour, by a couple (- #*a*, + H*m%), parallel to the normal m* to
the middle surface at the point D, {(parallel toO;D;). In fact, the moment of
that couple with respect to the point D is:

(T*ds*, H*m*] == [t%, m*) Hrds* = Fntds*,

where ds* e (G, ia the arm of the couple.

In the same manner the vector of the twisting moment in the adjacent portion
CoC, may be replaced by a couple

—  OH'm* —. . OH*m*
(e BEae). (e 22 ).

applied at C; and C, respectively, and parallel to the normal m* to the middle
surface at the point D; (parallel to O1Dz).

As a result of the transformation of the twist. ng moment, two forces are applied
at the point Cp :

— - AH*m*
H*m* and ~<H“m"+ ds*’m 1:").

Their geometrical sum is —a—'d{:*'"i ds*. Hence the twisting moment per unit length

of the contour is statically equivalent to a force of a linear density __.d%:,"’l. *

In this manner, the sum of the force per unit length K, and of the twisting
moment My at the contour of the shell is statically +quivalent to the force
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F =R, dm (8.13)

and to the bending moment:

G* =¥ Mhntne®.
?‘. w (8.14)

If the contour has the corners A and B, then in addition to the distributed force
AH*m*

on the contour — - — localized forces will appear at the relevant points:

(- H*m*)s and (H*m*)s.

Therefore the twigting moment H*Ti* is statically equivalent to a distributed
force of the type — 2°m and to two forces (— H*m%), and (H*m+)s acting at the
corner points. ds*

The vectorial relation (8.13) enables one to express the static boundary condi-
tions in any system of coordinates. We shall now consider this in an orthogonal
system of coordinates. Let ® be the vector of the external load applied to the con-
tour C* of the deformed shell, referred to unit length along this contour, and

FHm)a
Figure 9

G be the external bending moment, applied to the contour, also per unit length of
the contour. Then the vector expressions of the static boundary conditions will
be:

=K\ — 22, (8.15)
G =3 Minrne, (8.16)

LA

where K, may be calculated from (8.9) and H* from (8.12). Let us now express
(8.15) in scalar form. If ®¥and ®¥are the projections of the contour load on the
axes efand m* then
E - ¢1‘Ex‘ + @z'gg' + ¢.‘E‘. (8 17)
* Substituting this expression in (8.15) and taking into account (8.9), we find:
L X 4+ D00t + Om= E( . T;‘;‘g + Nytm* ),,‘t —
i A

O g O
os* as*

35



* But since according to (2. 22)

am* _ e _ gt g dey e gs
=y m; _,—24 k& 2+’ E;—"i 1A, (8.18)
i=\ i)

by substituting this expression in the preceding equation and comparing the coeffi-
cients of EJ* and m*, we find the scalar form of the boundary conditions:
®* =2( T;i n* 4 k:i”"i‘)’ D =N *a* + Nyt — %;
7 . (8.19)
G=X Mnrnyt (5 k=12
e
Here we can neglect the elongations which are sraall in comparison with unity,
without affecting the degree of accuracy, assuming n;¥=n;, 1% = 1;, ds*=ds; analo-
gously, we can neglect the terms due to bending n the expressions ®*. Hence, the
boundary conditions may be expressed in their final form as follows:

2 2
o = 2 Thaa ¢:"=2N;*n; - ";:'. ¢ =2M.‘mn,. (8.20) (8.20)

i} it “h

The . cctor ® may also be projected on the axes of the trihedron {n*, T*, m*}

T m O WP B T Ot = Tra* o §5T f Vo — TH
Henc iplying scalarly by n*, 7*, m* we nbtain:
—, dmH" —, Om* —, dm*H*
Dpe = T, — n* o Qoo = §* - * Taer Q¥ =N* — m* o
or, 8.18), and the equations
n*m* =t*m" :;‘d;l'}dv* =0,
a*=n, ©*erv, ds*=ds,
w
Pas=T*  H* z kbr‘-nj; Pre=8 — H* E k:i L7L7S
"’ - b (8.21)
@, = N* .
as

*, S*, N* are given by (8.11). If ¢ is tie angle between the positive
n the a, axis and the vector 7, we can in.roduce into the boundary conditions
1e projections of the vectors T and n of tke non-deformed contour of the

T = N;=cosy, Tp=n, =Sine * 48.22)
n addition to the static boundary condition:, there may also be geometrical
iscellaneous boundary conditions. We shall list here some possible variants
boundary conditions, and for simplicity we shall assume them to be homo-

us.

1. A hinged, immovably supported edge: n this case, the following conditions
to be fulfilled at the boundary of the shell:

w=u=w=0, G =0, (8.23)

re G* is the bending moment at the contour cr at its elements.
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2. A hinged edge, free in the normal direction. The following conditions
have to be fulfilled at the boundary:

G* =0, N*A"oi‘*zo, =y =0. (8.24)

3. A free edge:
Dy =P =P*=0"=0. (8.25)

4. 1In the case of a clamped edge, the conditionu;=uz=w = 0 must be ful-
filled and the angle or rotation at the contour has to be zero nm* = 0. By substi-
tuting for m* from {3.16) and putting fi=en,+@éy,weobtainnE;+ n;E; = 0.
That condition will be fulfilled if

gl: = n,0w/A102; 4 n0w/ Arday =0
at the contour. Hence, in the case of clamped edges, and of a large deflection, the
following ordinary boundary conditions of the linear theory have to be fulfilled:

)
ul—_-u,=m=§:—=o. (8.26)
Besides these main cases of fixed edges, there may be cases of elastically fixed
edges. Some examples of this may be found in the book by S, P. Timoshenko fo.26/

In solving problems of stability of thin shells and other problems with several
successive states of stress, it is sometimes useful to start from the equations of
equilibrium with respect to the undeformed state of the shell, i.e., with respect to
the system of coordinates of the undeformed middle surface*, The differential
equations of equilibrium (7.5) that are satisfied by the moments and the shearing
forces do not differ from the corresponding equations of the linear theory of shells.
But the first three equations of equilibrium (7.4) differ substantially from the corre-
sponding equations of the linear theory, because the former contain the coefficients
of the second principal quadratic form of the deformed surface, and the projections
of the external force on the coordinate axes after deformation. Therefore, we
shall now project the vector equation of echuilibrium (7.1) on the coordinate axes of
the undeformed shell. Let XH], xH and X 3 be the projections of the external forces
on the axes

X = Xie, + Xsex + Xim, (8.27)

where €; and &, are the unit vectors of the coordinates at the undeformed middle
surface and i is the normal to this surface. This decomposition will be convenient
if the external forces are given in the system of coordinates for the undeformed
state. We shall resolve the vectors of the internal forces in the same directions

Ki=Thei + T;zé_:'{'M“ﬂ—'L. (8.28)

where T} are the tangential forces in the system of coordinates of the undeformed
surface, and N!" are shearing forces normal to that surface, whereas T§1$ ng .
We shall substitute (8.27) and (8.28) into the vector equation of equilibrium (7.1).
We can assume Al = A,, because the rotation of coordinate axes was taken into
account. Therefore, using the formulas (2.18) and (2.22) for differentiation of the
unit vectors we find:

(A2 T8 H(ATH) s+ ThAu: — ThAz +

+A:A:(kxlN\“+k12Nz“+XT)= 0 1,2

(A:NT")1 +(AND) 2 — A4z [Ri1TH: + k22 Ta+
_______________ + kn(Th+ T3 — X3)=0. (8.29)
* See the author's paper /0.7/.
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* In the above-mentioned equations ku refer t) the undeformed middle surface
of the shell.

Let us express the forces Tﬁ and N in terras of the forces T% and N&
Acoording to the definition

Th=&R. Th=ak., Ni= &R
Substituting here for K, from (6.8) we find

TH=THoe + T ° + Noa e,

NP=TIhmE* + Thma® + Nrams.
Since

Qe*=1+ey Get=en HM=F, mmt=§,

therefore
= T;: (1+en)+ r;:“n + Mg,
T3=Tutn+ Tl + ea) + N*EBy, NT=Tyju, + Thes+ BN, f_i (8.30)

Let us derive the static boundary conditions,

After substituting for K, from (8.8) the expression for the force acting on the
contour (8.15) will be

ImrH*

B =Ky + Kom — yrank (8.31)

Here, n;, n,, s relate to the undeformed contour ( wing to the smallness of the
deformation. Let ®} and q’{,‘ be the projections of # e external load on the contour
on the coordinate lines of the undeformed surface, :nd 4)1; the projection on the
normal to this surface, Then we have

- — — - = — om* H*
¢ = oo, + Sle; + im=Kin, + Kany - - mas .
from which we obtain
. - —, OH* Im
Pi=e (Kx"1+ Kany — m* }‘-‘T — H* 3_‘: ‘)= ™hm+
A _  dm*
+7§1na—ExT‘——-¢.H"? f

— (= = —, OF* om:
0;=M(me+l(,n.-m'¥—1'1' ‘a;‘)=N;’h+

OH* Im*
N By T
According to (8.18)
om*
e X

The quantity H* k* ~ t3 xy k#%; may be neglected in cc mparison with the other
- § .
terms of the expression for <I>F. In fact, if the rotations are of the order of mag-

nitude unity, then according to (8.30), NH will be of ‘he same order of magnitude
am*

H* . If the rotations
s

as the membrane forces, being large in comparison with =

are small, E-‘?ﬁlﬁ* will be small in comparison with E,% because E ;= 1.
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* Therefore, the static boundary conditions are:

AH® AH*
Sr=Tinm + Thr— £ wl Y= Thn, + Thm — & il
¢ (8.32)
e .
Pf=Ma+Nm—~ £, OG= 2 M;.n;n,.

ik
where the twisting moment H* is to be introduced from (8.12).

Let TH, s% NUpe respectively the projections of the vector R—n on the normal
fi, the tangent T to the contour C, and the normal m to the undeformed middle
surface:

M =TnKy= (Ko + Kamg) i, S" =K, 1, N'=K, m.

Substituting for fi from (8.28) we find:
=Y Thunm. ;=Y =Y N'n. (8.33)
[ i R i
Since
T=vg e B mE
we have for the scalar products

Am*=FEn + Eans, T m* = Er + Exny (8.34)

Projecting the vector (8.31) along the unit vectors i, T, m, and using (8.33) and
(8.34), we find the boundary conditions in another form

aH* AH*
R = T — (Eyy + £4m) o5t (D:I:SH'—(El‘l"’Ez‘!)_a’ . (8.35)
aH*
PI=N"—E, Fra

where ®H, @Y, @Y are respectively the projections of the contour load on the
normal and the tangent to the undeformed contour of the shell and on the normal
to the undeformed middle surface.
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Chapter II

ELASTICITY RELATIONS. VARIATIONAL EQUATIONS OF
THE NON-LINEAR THEORY OF SHELLS

§ 9. Relations between Stresses, Moments, and
Deformations of the Middle Surface

The principal geometrical and static equations of the theory of thin shells,
which have been obtained in Chapters [ and II, were derived under the assumption of
small deformations and arbitrary bending; therefore, to determine the state of
streas of the shell, we shall use Hooke's linear law for a homogenous and isotropic
body:

- _£ z [ T P - £ z v .
au-l+v(.“+l~2v ) o2z == gﬂ'*'1—'2\'6)’

1+
£ . —_ £ z —F—O)' - E 7. (9.1)
M= i o 1+v('~"’+1» ) T e
E . = :
an=l+V¢;3, B_z'l'1+ln+¢;',

where E is the modulus of elasticity and v is Poisson’'s ratio,

The above- mentioned relations are, however, not sufficient to determine the
relation between forces, moments, and the defc rmations of the middle surface. In
addition, one should also know the law of the variation of the deformation €}, or of
the stress along the thickness of the shell,

The &} were determined in the analysis «f deformations by means of the geo-
metrical hypothesis of Kirchhoff and Love, assuming that €f; = &5; = 0. Neglecting
the shear &}, and %, is equivalent to neglecting of the tangential stresses o,, and
65, , and therefore of the shearing forces N% and N%. For thin shells, although
¢,, and o, are small in comparison with the stresses oy;, ¢;,, and the correspond-
ing shearing forces are small in comparison with the tangential ones, they cannot
be neglected, because that would be in contradi::tion with the conditions of equilib-
rium inside the shell and at its edge. Therefore, the shearing forces N* and N%
which depend on o;, and ¢, have to be determired from the equations of the
moments (7.5).

For the determination of the stress compunents G4y, Gy and 6,, we shall
rely on the further assumption of the Kirchhoff- Love hypothesis (see § 1). There-
fore, we shall assume that the normal stress o on surfaces parallel to the mid-
dle surface is negligibly small in comparison w.th the other stresses, The stress
0, may then be determined from the third equa:ion of equilibrium for a three-
dimensional body, by integrating it with respec: to z. From the existing solutions
of particular problems it may be concluded that o,~ Etep/R, i.e., they may be
neglected when considering small deformations of a thin shell. One can use this
fact for the determination of the relative elonga ion 53’3 in direction of the normal
to the middle surface. Assuming o, = 0, we fiid from (9.1) the following expres-
sions for e}, and 6.

= - (dht) 0= !i%'— (¢ + 5). 9.2)
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By introducing this expression for # into (9.1) we obtain Hooke's law for shells:

c _
= (), =5 (R, 9.3)

r
1+

£z

qpp = Tae

The tangential stresses o, and o, may be determined on the basis of the known
shearing forces N% and N%,.

The relations (9.3) enable one to express the tangential forces and the moments
in terms of the deformation of the surface. Substituting in these the expressions
for deformation from the first approximation formulae (4.14) we find

oy = r_c—v-; [ennFveer+ 2 (hr Fvean)]; @2 = l“f-—v (e12 +2252); (9.4)
i f v, feaz + vers + 2 (2224 Vi)l
Introducing these expressions in the formulas (6.10) for the forces and moments and
integrating over the thickness of the shell from —-t/2 to t/2, we obtain Love's
formulas in the first approximation lo.11/:

Gyg ==

T;x=[((z“+vtn). T‘“—_— T;|=-‘K(1—V)'u. T;'—’K(ell"{'“”)]
. 9.5
Mo, = Diers v, Miy= M5, = D{1 =)z, 0.5)

M;2 = D(ln+\"n),

where K = Et/(1 —v2) is the tensile-compressional and D= Et*/12(1 - v?) the flexural
rigidity of the shell.

From (9.5) we obtain the inverse relations:

=K (TG =0Ty o= K (T =Th), ea= KO0 T o

b= D (MY — M), e = D (M — M),
xip = D' (1 4v) My,

where K' = >E]r' , D'=12/E.

Formulas (9.5) represent the simplest variants of elasticity relations and
coincide with the corresponding formulas of the theory of plates. The order of
magnitude of the error is t/R in comparison with unity, i.e., it corresponds to the
error of the initial hypotheses. The above-mentioned formulas satisfy the sixth
equation of equilibrium (7.6) with the same degree of accuracy. By adding to the
right-hand sides of (8.5) secondary terms which contain the error in Kirchhoff's
hypothesis, they can be made to satisfy the equation (7.6) exactly and also the re-
quirements of the general theorems of the theory of elasticity. But without devia-
ting from that hypothesis it is impossible to make them more precise.

For a thin shell (¢~ ¢;R) the relations (9.6) are sufficiently precise. For a
shell of medium thickness (¢~R V), for which the error in Kirchhoff's hypothsis
is of the order V#jR /1IL. 1/, it may be necessary to make them more precise.
After the addition of secondary terms the general relations of the theory of shells
become symmetric, being more useful for theoretical research. The elasticity
relations with additional secondary terms have been dealt with in the monographs
by V. V. Novozhilov /0.15/ and A. L. Gol'denvaizer /0.8/. When using the com-
ponents of bending deformation in the form (3.31), taking finite displacements into
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account, the type of elasticity relation given in § 12 of the present chapter is the
most convenient variant. The problems of non-linear elasticity relations and of
strain hardening have been briefly considered in the paper /IIL. 3/,
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§ 10. Principle of Virtual Displacements. Deformation Energy
of the Shell, The Ritz Method

Let us consider a shell in equilibrium under action of the body force F and
the stresses p,. Let 37 8, 3w be infinitesimal variations of the elongations,
according to the constraints imposed on the shell, Then the work done the external
forces acting on the shell, in the variation of elongations, will be:

A = 5_” FsEdQ+ﬁ;.sEdn, (10.1)

@ (m

where 4 = AlAjdada;dz is an element of volume of the shell, and Il a surface com-
posed of the boundary surfaces z = t/2 and z = —-t/2, and the surface 3 of the
boundary section of the shell. According to (4.16) the variation of the displacement
u is:
= »

bu = dv 4 z8m*, (10.2)
where 8V is the variation of the displacement vector of the points of the middle
surface and dm* the variation of the normalto o*, Letusexpressthe virtual work
of the external forces in terms of the deformation energy of the shell. The stress
vector py acting on an area which has a normal v may be expressed in terms of the
stress vectors p,, p, and p, which act on the areas taken on the coordinate surfaces
a, = const, a, = const, and z = const. From the theory of elasticity we have the
formula

Py = p1 €08 (v, a1) + p2cos (v, az) + pecos v, 2).

Introducing this into (10.1) we obtain

3A = Yig Fy ud + .U{;I cos (v, &;) +
+ p2 cc(;s {(v,a2) + pz c‘:?s , z)}ﬁ udl,

*Trar rming the surface integral into a volume integral by the following formula
{(Gaus strogradskii theorem in orthogonal curvilinear coordinates)

f {7. cos (v, ay) + Jo cos (v, w) + Frcos (3, z)} dl=
I

_ Mty | OfaHHy  OFcHiHy )
_fff (__ “ﬁl,!. + - + h.id'z—“ dzdasde,
)

where fl, ?2, fz are arbitrary vectors gives, with the further assumptions
H, = 1, H = A%, H, = A%, the result

u:fff{i‘ﬁm;,q;+ (P A8 | +
®

+ (PoAi¥ ) + (P A8 E), | dosdosds

3

or, by using the equation of equilibrium (5.2),

u= [ f [{radn, +nden, +
{9

+ AR, } dadaydz. (10.3)
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* This is precisely the expression for the principle of virtual displacements for a
shell considered as a three-dimensional body. The triple integral expresses the
work done by the deformation of the shell. We shall express the external forces and
internal stresses, which appear in the variatior equation (10.3), in terms of forces
and moments in the same manner as we did in Chapter II for deriving the equations
of equilibrium. First we shall transform the right-hand side of the equation (10.3).

As, according to (10.2)
(30),=(30), + 2m, =177, + 2bm’, (33), =tm*,

we may write (10.3) as follows:

u:f} f{;.,a;a;j#;_,a;a?,“ o AN+ AT B ) +
“

+ E,AIA;ar‘n*} dayde d. (a)

To transform the integrand in the right-hand side of this equation, we shall write
the stress-vectors (5.5) as follows

PI=qi+ o mt,

where
? Pa I e
< — .1 - - . 2 —
Q=0 —-+ %~ pr=e, % + ey +om”
i 2 A; )

Using thesge expressions and the fact that
+7z, M=), mEtmr =0, m imy + m) dm* =0
we obtain
2 {BIATI, + oAy Bmy) + peATAD bt =
=238 m'\ + HATIMY) + (0, 7 + @y TA}) BR*

From this equation, taking into account the exp “essions for the forces in the shell

2 #2
K= f;,dz. N = f‘iz‘i’-
By f2

the equation {(a) may be transformed into

v= f J( Rl 07, + KAl 75+ (V0575 + MAT ) o +
(%
n2
+fz { @z o4 gaa) oy dz} dayday. {b)
Zep2
Here a* is the entire area of the deformed middle surface of the shell, which,

owing to the smallness of the deformation, is equal to the undeformed area. For a
further transformation of the integrand of expression (b) we note that the moment

vectors M. given by (6.2), may be written as:

i

2 a2
/’\r‘ll:;fz[;ltfﬂdzzj . | gy de,
~ti2 -2

where g, is a vector perpendicular to m¥. Hence, multiplying vectorially by m*
and using the formula for the vector triple produact [éfbel]=8(ac)-2{2?). we find
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02
(W, 70) = [ <G
—t2
As a result, the equation (b) becomes
. f f | K337+ RATA T+ (WIATT + M) Vn+

+ AH, T+ AL M, e ] amY) deda

We shall introduce in this the projections of the iorces and moments,

for kx; from (6.8) we obtain
RAT 4 KAl ¥75 + (VAT - MAL T3) b =
ATA; ..
_‘_._7 Tll ¢
it ‘
Further, by substituting for &, from (6.8), we find

—e
Ary

AM,, e L am A M e A my =

ATA; _
= 172 M e m
i A

(10.4)

Substituting

(c)

(d)

We shall adopt the following notations for the scalar products in the right-hand side

of the equation
AT, =Ty AT JA = AR,
and shall transform the right-hand side of (d).

To that end, we note that the identity

—.y —e — —e — .=
r'jsm.l:a(r_/m.,)fmbllr'l

upon substitution of the expressions

. 0.

— = . e —»
rymy=A; A ko my= Ak, e,

becomes =1

2
TAm, = (A4 ‘u)-2 A A] K, YC,

Swal
After tal ing A A;

equation (d) becomes
2

Ay S‘ S R
ETMU"’Bm": AIAI._‘ LI k‘,htr} MU-

it [ s=1

(10.3)

outside the variation sign, because the deformation is small,

Introducing the right-hand sides of this equation and of equation (c) into

(10.4) we obtain

3A= WWids (do= A Agdxday),

where the integrand

2
el N e M
WY = e, - M av,,—z RYY

0
kS
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* is the variation of deformation energy of the shell per unit area of the middle surface.
On using the simplest variant of elasticity relaticns (9.5) and eliminating the quan-
tities that are of the same order as ks £, (10.7) simplifies and becomes, in view

of the equality T;‘j = Tj“;\

w =X (750 + M ),

i

(10.8)

where ¢, and x,, may be expressed by (3.13) and (3.29). In'fact, according to (10.5)
we have
VO =T AT, H = (7 0 TR A4,
and by varying the equations
vy A .
(r‘) A=A 20 24, i E
we find

Y +TLAT = 24,48, G f=12)

Therefore

5—‘71‘ =B, 5“‘12 + 5;. = Zh¢),. *

Thus, the variation of the deformation ener gy of the shell is composed of the
variations of the energies of elongation and shear

Wy == T 8¢ + T dens -+ 2T 801y (10.9)
together with the variations of the energies of bending and torsion:

5W2=M;|5111+M;15¥22+QM;zaln. (10.10)

By introducing the expressions (9.5) for the forces and moments in (10.8) and
integrating the resulting expression over the components of deformation between
the state of zero deformation and the state that ha; the deformations ey and %y,
we obtain the expression for the specific work of « eformations of the shell,

2W = K|(ess 4 233)* — 2(1 — v) (c11 a2 -—¢¥7)J + (10.11)
+ D[y 4 232)* — 2(1 — v) (%1, X3z — 1122)]
where ¢, and x;, may be expressed in terms of tte displacements u;, u,, and w,
according to (3.13) and (3.29). The formula (10.11) is similar to the formula for

the deformation energy of a plate. Use of this formula for a thin shell involves an
error of the order of magnitude t/R in comparisor with unity,

* We shall now express A the left-hand side >f (10.3) in terms of the external
forces and moments. Substituting for 84 from (1€.2) into (10.1), we obtain:

ni

17
M:ff(aifi-"d:+57n~fﬁz.u Ay Ay* day da, +

(o =2 2

+’ f(,‘y.rv+z,7, s dl,
tan

where Il is the surface composed of the boundary ::urfaces I, and IT_, with the
areal elements

dll(4) = A A" dayda,, dll(-) @ A,*A,* da, da,.
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* The stress vectors on these surfaces are p, = p, and py= —P, respectively. Further-
more, the surface IT includes the surface Y. of the boundary section of the shell,
with the areal element d¥ . The stress vector at the point (“1' a, z} of this
section is:

;n‘ = E n*+ i’-z ny,

where n? are the projections of the vector normal to > on the directions of the
unit vectiors EE‘*’ of the deformed shell at the distance z from the middle surface a*.

In the notations adopted above, we obtain for 8 A the following equation:

! nz
—f  je=n2 — -
5A :ff 8| op, 2+de=\+a7n' 2p;
=1, i /

smtf2

- 2
{a}

1

+j 17'42\\ A, Ay day dxy +ff(in)?+ 27, 4 m*)dE.
s
—1mn / 1)

Furthermore, according to formulas of the type (8.5), the projections of the normal
vectors to X at the points z = 0 and z = z will be written as

= A, f’:% £ . — LT
=AM == ds '
da. da
m':H,"I:‘ n,":—H,"'TS'T‘ (*)

where ds? is an element of the arc of intersection of ¥ and the surface parallel to
the middle surface at a distance z from it. Evidently, an element of the area

ig d¥ = ds?dz. Therefore, using the equations (*) we find that ndX = n* ds* dz.
Thus,

;n, ar= l;;":z 'f';l 7% )42 = l;- n* 4+ ;2 "x‘x)d-\"‘j dr.

With this, and using (6.4) and (8.8), we may write the previous expression

for 8A as follows: v o
34 = ‘ ]( v+ Fame)ds + [K,,wds*+

(L4} o>
32
+ f f 2{pin + pany’ ) dsdz,
c* -2
where do = AlAzdcz1 da,; C is the contour of the non-deformed shell; ds is an__
element of arc of this contour (because of the small deformation); the vector Y is
— P
1+ J zFdz.
S

7:21!.

We can find i in the following manner. Let the tangential and normal components of
Y be Y, and Y, respectively:Y = Y; + ¥;. Multiplying vectorially the external
moment (6,5) by m*, we find for Y jtthe expression

Therefore,

In the same manner, by multiplying vectorially the moment at the contour (8.8) by
m*, we obtain
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2
fz(;.,.,» + Fang Vtz = By, 7).
)
Taking the above into account, we obtain for §A the expression
sA:ff(,‘n&HZ, ;*ls;r')do+1'(R,a€+mm,;'|;,;.)m_ (10.12)
) ¢ :

Here we have still to transform the integral along the contour. Using the expression
(8.2) for M and the formulas [t*, m*] = n*, [m*, n*] = t*, we obtain:

(M, m*| = Gn® — i,
Furthermore, we have
- = - - " -+ da . 2 —
v - Hivrdme =Knydv—H( r',— ——') "=
Kyt T dm Kpbu (r_I e +r, e Im

e,
ds

= - [ . day -, -~ — 4y
=K v+ om0 —" 4, — )_— 3 S
Kydv+ 1 me( r + 8 ey Kpdv +H'm g

dMmm\ - d -
13 —{trmrvy) Kk
e A G

- - - ] - —
= K‘lu+H"’m‘;‘—“ Zu:(K,,—

Using these and the preceding equations we finally obtain:
3A :ff()?a?ﬂz, m*]8:2%) do 4
0
+f($a?z+ Gn*dm*)ds+F*m* 8 |, (10, 13)
< [

where @ is the vector of the external force on th:: contour, and G* and H are the
external bending and twisting moments at the contour of the deformed shell,

The surface integral in (10.13) represents the work of the external forces in
infinitesimal variations of the displacements and the work of the external moments
in infinitesimal variations of the twisting angles, since

2
L, m*]8m" = ) L,eld n*,
=1

where e*3m* are the variations of the twisting angle.

The integral along the contour in (10.13) is essentially the work of the external
forces and of the moments respectively in variatioas of the displacements and of the
twisting angle, because n*8 m* is the variation of the twisting angle about the tan-
gent to the contour.

The term outside the integral H*m* §v 'c r:presents the work of the localized
contour forces on the displacements. When the edges of the shell are hinged or
clamped, this term vanishes. It also vanishes whin the contour has no singular
points and H* or V have no discontinuities. If the :ontour of the shell has singular
points, localized forces of the type H* m* can app¢ar at the singularities as local-
ized reaction forces,

Thus in the non-linear theory of shells, the variational equation of the prin-
ciple of virtual displacements is expressed by the -elation

M={ [swan dde,, (10.14)

{s)

where W is given by (10.7) or (10.8) and 3A by (11.13). It should be noted that
the equation (10.14) is also valid for the general non-linear theory of shells, where
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the displacements and deformations are considered to be arbitrary /111. 3/. The
variational equation can be interpreted as follows:

Let 3, be the potential deformation energy of the shell and 85, its total
variation for isothermal or adiabatic deformation:

s=[[wa, 631.—__[).[6\1/410.

(O] )

Let, furthermore, 33:= - 84 be the variation of the potential energy of the load.
Then we can write (10.14) as

83 =5634-83,=0, (10.15)
where 5 is the total potential energy of the system,

Thus, the state of equilibrium of the shell differs from the adjacent geometric-
ally possible states by the fact that for arbitrary virtual infinitesimal displacements
of the system from equilibrium, the increment in total potential energy equals zero,
This is the variational principle of Lagrange. We shall use the term "geometrically
possible states" for any states for which the displacement variations do not disturb
the geometrical constraints imposed on the shell., The following are geometrical
constraints:

1. geometrical boundary conditions;

2. the deformations e, and x, allowed by the variational principle of
Lagrange should be continuous deformations satisfying the conditions of continuity
(3.32) and (3.35). These conditions will be fulfilled by expressing the &, and x»,
in terms of the displacements u, and w according to (3.13) and (3.29).

The increment 8A represents in the work of the external forces and moments
the total variation only in some particular cases. Let us consider, for instance,
the case when the external forces may be taken to be independent of the deformations
and the parameters e, are small, i.e., e, ~ F. Neglecting them as small in
comparison with unity, we obtain from the formulas in § 3:
e dm = - Su

i 7% dm* = — bw,, where w, =, 0, + n202

(n| is the projection of the external normal on the undeformed contour of the shell).
Then we obtain from (10.13):

A= ff(z?i?— Moy -~ Mywy ) do 4- Zf&??ds fﬁwnds. (10.16)
) ] &

Here C is that part of the contour where the vector of the contour force O is given;
C the part where the bending moment is given. The variational equation (10.15)
may be written as:

8343 =083 =0. (10.17)

This variational equation is also valid for finite bending, provided the edges of the
shell are hinged or clamped and the external forces are conservative:

A T
X, = X2 o’ Xa ol (M =0).
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Therefore, (10.17) may be interpreted as follows: among all virtual displace-
ments compatible with the geometrical constraints imposed on the shell, only those
can occur in reality for which the potential energy of the system 3 assumes a
stationary value (i.e., 83=0).

From the variational equation (10.14) one -an derive the equations of equilib-
rium (7.4) and (7.5) and also the static boundary conditions (8.15) and (8.16). Let
us now prove that.

* Using (c) and (d) we write (10.4) as follows:

BAszEEA;“'(ﬁ,}; S+ M ¥mde G, j=1, 9), (10.18)
)

i 7
da= A"A;* d a, da,.
where 8A is given by (10.13).

Integrating by parts the right-hand side of (10.18) we obtain

34 =§ZE(T,‘, S8V + My el Ymr) ) ds* —
Ce i
IVt 37 w055 448 a0
7

@ 7
for which we used the following formula for transforming the surface integral into

a contour integral:
5}2}9., de—= Efq: Ayny dC—jJ.Z;(IA, Ay); d1y day. (10.20)
@ ¢ ci @ i

By substituting for 8A from (10.13) and introduciig the quantities N"i‘ given by the
equation

N {00375 45454570, 4 431, oy = YO0 -¥) 447, (10.20)
J [

we find

N
3-~227"?71‘)8;+(a'n‘—E)M;irnj)l;l‘ﬂ"f-
[ 330 oo S

) (10.20a)

I Wi _ -
e =SS e
! J 4 J
4

[cg i
2
+ A AN S A" 4 (B v} da, de,.

Jam]

After differentiating according to (2.18) and using the equality m*d m* = 0, the
equation (10.20) becomes the vector equation of moments, equivalent to the two
scalar equations (7.5). Therefore N"i‘ are the she:ring forces. Since

Z'D;":;} Ai*'la;w:_Aia—l me(3y), ;!:-:2‘4“‘;!/.
i

we obtain, after integrating once more by parts:
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T
M

N e am® do* = — \jZ(N,* A" m*) (o) dat=
~

(="

17_52\/ nrm b ‘lly+((2(‘V,’A,‘A,‘AA‘“! m*) ;3 v dayde. =
pp: vy

i

= 521\/*" m~nt,d:-f»‘.g‘{z(;V[*Al*A;A‘xv—l ), mrau4
v
¥ .

¢ (") i

+2A‘1A,*N/ ket a?} 41y das.

iJ

Introducing this expression in (10.20a) and recalling the notations for the contour
forces (8.9) we obtain the relation

S{\(P K,.)aa ¢(6‘ n* — 22”,, ; n )om ds*4+ A m*5 Ul

= ff\u; )y + (AR Y, + A 4" Kbl da,

Cc*

(10.20b)

[Ear]

22{(’: P ARAATT ) ATATND KT 1+

AR Ar A A A, = YR AT AT AT D
i

i

gince

(10.21)

It is possible to check the validity of this equation by differentiating both sides by
equations (2.18) for the deformed surface. While deriving (10.13), we proved that:

d -
— (H*m "Bu)_Buym — H* o vm”
ds* ds*
e mio| :fm g UM e mey ast, (10.22)
‘C' ds*

c*

Using the latter equality, we write the variational equation {10.20b) in the following

form:
S{(qa R+ "f’_”L\“ G — H* 3% EZM o n, Bm ds‘+

(R HYmm YT HAA KOt + (A* K2 + AFAT X 8o day day=0.

(%)

In order to obtain the final result, we transform here the contour integral containing
the term dm*. Since

M= H* 1* + G* 7, [Mp, m*|=G*n* — H* =, (10.23)
we obtain, substituting for Mn from (8.10),
(77, m* ] = EEaii e nge. (10.24)
i
Therefore

BT+ LY M e = 0 X (10.25)
i *
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Hence the expression (10.20b) finally becor es:
[{(z- Rat- M7 ) 50 4 (G - 6*) avime Jas =
o

+ = 1) i et [ K0+ (10.26)
9

+ (AR} 2 + A;A;)?} 3vda; 12y = 0.

Here ¢ is the vector of the external load at the contour, G* and H* are the external
bending and twisting moments, and G*and H* are given by (8.12).

Since the variations of the displacement vector and of the twisting angle are
arbitrary, being independent, the static boundary conditions and the equations of
equilibrium are derived from the variational equation (10.26) under special assump-
tions on their separate variation,

Let us consider those virtual displacements for which the variations of the
displacement vector and of the twisting angle vanish on the contour: &V = 0 and
n*dm* = 0. According to the fundamental theore:n of the caleculus of variations,we
obtain from (10.26) the vector equation of equilibr um, because of the arbitrariness
of 8V inside the shell. As far as the vector equat.on of moments is concerned, it
has no independent role, serving only for the determination of the shearing forces.
We obtained this equation in the above-mentioned 2xpression (10.20) while we derived
the equation of variation (10.26).

We shall assume that at the contour 8V = 0, but that the variation of the twisting
angle is n* 3m* # 0. Then from (10.26) we obtain

[ (& G)asm -0 (10.27)
4
Since n* 3m* is arbitrary, we obtain static soundary condition (8.16), G = G,
If the state with 8V = 0 at the contour is a geomet: ically possible state, we can de-
rive from the variational equation (10.26) the vectorial form (B.15) of the static
boundary condition.

Let us note that at the end of the 19th century, the fundamental equations of
the theory of shells were obtained on the basis of :he principle of virtual displace-
ments.

L.e well-known Ritz approximation method :or determining the strength and
stability of shells is based on the variational principle for virtual displacements.

The essence of this method is as follows: it was shown above that the varia-
tional equation (10.14) contains the equation of equ.librium and the static boundary
conditions. Therefore by satisfying the variationzl equation we satisfy the static
conditions inside the shell and at the contour. The higher the degrees of approx-
imation with which the problem is solved, the higher the degree of accuracy with
which the static conditions are fulfilled. In this case, the geometrical boundary
conditions are essential, i.e.,, they should be satisfied in advance. Therefore, in
approximate solutions of actual problems by means of the variational equation (10.14)
we shall use approximation [trial] functions like tke following ones:

o= z Aefa(ar, @), @ =z Bagr (a1, 22), (10.28)

Rt A=z}

W= 2(::% (a1, ¢q),
fr=ry
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where Ak, B,. and C,, are constants to be determined and fk, [ and ¢, are
given functions chosen in such a manner that the displacements u, u,, and w should
satisfy the geometrical boundary conditions. Introducing then (10.28) in (10.14)

and comparing the coefficients of the variations SAR, 8Bk, ECk we obtain a system
of algebraic equations from which we can calculate the constants A,, By, and C,.
In general, the derived system of algebraic equations will be non-linear. It will
become linear only in the linear problems of the theory of shells. In actual cases,
besides the difficulties of choosing the trial functions (10,28), it is very difficult

to solve the non-linear system from a purely algebraic point of view. But in spite
of that, the Ritz method is the most widely used and the most reliable one. The
convergence of Ritz approximations has been proved in the monograph by

S.G. Mikhlin /IIIL 4/,

53



§ 11. Equations of the Bubno 7~Galerkin Method

The variational equation (10.26) represents the equations of the Bubnov-
Galerkin method in vectorial form. On projectiag the vector 5v along the unit vec-
tors of the coordinates of the deformed shell

3 =e* (30h+&* (89): 4 m* (50), (11.1)
the expression (10,26) becomes
f{(«f_ﬁn + -"f,’jfi)aa+(ﬁ* - G%) E*aﬁ~} ds*+
& (11.2)
FE - HY et [ (740 00+ 74909 + (7.4, (59 ) dasdes = 0

Here the notations (7.4)1, (7.4)2, ('7.4)3 represer t the left-hand sides of the equations
of equilibrium (7.4) and in addition

(82) =t + 5 30, (80)s=bw (% — )35 (1= 1, 2), (11.3)

furthermore, A*3m* is the variation of the twisting angle about the tangent to the
contour. For small deformations this is

U = (4 et b = (et 4 matnt) —
= - N (E,ben +fz$€n+£.?n:)f (11.4)
-~ na(Exdens + Exders+ E3b ).

Hence, when the displacements are small, negle:ting the parameters e, in com-
parison with unity, we find

nUm = — by — ey = - iy (11.5)

This is the variational equation of the Bubnov-Ga’ erkin method in the system of
coordinates of the deformed shell. In this form, these equations are suited for
theoretical research, because they are related to the energy functional which is
positive for amall deformations and finite displaczments. Another variant can be
obtained by projecting the vector &V along the uni: vectors of the coordinates of
the undeformed shell:

8 = gjdu; + eiu, -+ miw. (11.6)

Projecting the vector equation of equilibrium (7.1 along the same directions we
obtain

JU(® - ot 257 G v s+ ) +-
c

- ~ J— 11,7
+(G* — G*) r*om* ) dsi+ ( F* — H") m*8u (L7

c +
+ J J{B29)001 + (8.29) b 4 8.200: b } dayday =0,

where the integration is performed over the contoir and the middle surface of the
undeformed shell; (8.28),, (8.29)5, and (8.29)3 represent the right-hand sides of the
system (8.29) in the above-mentioned order,
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Let us now derive an integral relation which will subsequently be needed. Let
us consider the integral .
1= [ [0+ 0012+ O 1} dost,

where f,, f, and f, are arbitrary functions. Integrating by parts (formula (10.19)
we obtain:

/= fé (i 7,5+ N ) n; ds* ‘ff[é {i TRy + N;Q,—x:/,) - x;,,} dev. (11.8)

C' ol N jual o il Nfmal

Here we used the identity (10.21) and set

2
A%y =GR () + A Ky

=1

2
QA =1, ~ N AT, S, (11.9)

sam)|

Substituting for A* from (10.20) we obtain

2

i Z,,,g,.,,. -y

% gaal

2('“:. ‘—'R‘A;-—I).i Wt ACACMA, }‘.".‘
[

(Ag_ = A, for i=1; A,_ = A, for i:?)'

whence, using (10.19) we find

4 :“ 2 N ot = Sz My Qunds® +

Eud B [

2 2
1 ij(ZM,‘E.-}-M,,Q,)W, (11.10)

%kl \i=l
where we introduced the new notations
3
Are=— o 3 (709),. (11.11)
Sam]

Using this newly-found expression for I, and taking into account that I = 0, we
obtain the integral relation

2 1
ﬁ‘ [zuﬁ;,_ L") + xgj,J‘ det + lp. = ﬁ ( 75Qu + M), ) dse. (11.12)
N =y iy

where I, represents the contour integral

2
Ica :j 2 (T e — ML2) m" + zmw,*,r, ]ar
Cr Lk r-] .

We now transform this contour integral. By scalar multiplication of (10.25) by
¢* we obtain R
Z M:,,u,' =0Tt - Hig®

i=1

j 2 M:.‘_‘,n,‘d,\" =§ 2(0”"11'— Ht*) RdsY =

Ce ik Ce

2
1 df. .
,—.5 G*Q,ds* — 51# Zr; (A—' 0." ~2 kS )ds':
c twa} [

C*

2
= s‘ G*Quds™ — S H*dfy + j. H* 2 kit fds*, (Q, = Z ﬂ,‘ﬂ,>‘
ad c* [ad ] =
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* By introducing the right-hand side of this equal ty in the expression for Ic" we obtain:

C'= f("l'fi + &0+ 9 - 3'9‘-) ds* + 71, L_.- {11,13)
o

where we introduced the contour forces ¢ and = and the bending moment at the
contour &* according to formula (8.19).

This, if the equations of equilibrium are satisfied, the integral relation (11,12} .
is valid for arbitrary functions f, and f; which are sufficiently differentiable. On
assuming f; = u; , f3= w and neglecting the second and higher powers of the displace-
ments and of their derivatives, the equation (11 12) expresses Clapeyron's theorem
for the non-linear theory of shells, After introijucing (11.9) and (11.11) in the right-
hand side of (11.12) and integrating by parts, ore can obtain the expression: N

E{(é - Rat “:;‘;") (zwm + B ) —(& -a)s, } s+
c : (11.14)
+( A~ ") file +_g {Tan-Fi + T4 fat 1 14) o | dagdmy =0,

It may be derived in precisely the same manner as (10.26) from (10.18). By setting
f,= (%), f,;= (37), in (11.14) and taking into account the equality e% dm* = —m* J ey
we obtain (11.2). We shall set

ft3 8 e (1v.15)

in (11,14) and subtract the result from (11.2). '¥e thus obtain the third variant of
the equation of the Bubnov-Galerkin method:

. dH'mM*\ - — ~
5{(@ — Ky + ‘—‘H“M ) (lx‘lm + ey*Buy 4 m’&w) +

(1118)

+ B8 - G*) npl; } ds + (5 - #%) aw( +“‘{ (T4, + (7 A)dug + (TAlbev ) dladay =0,
[ <

where the integration is performed over the cortour and the middle surface of the
undeformed shell,

Here we used the notation

l:,-.—_lw,-—zn)u. (1127)

s

These quantities are obtained as follows:

2 2 .
nmt 4 7,9 = n¥8m* 4 n amr ~m)v Zi LY R
) A;da, A, Oy

s=al

from which, taking into account the equations

— 1
O LA G- I
¥

2 YL TR 2(,,‘-'.;--;1' Fap amar) =0,
AR 0g -

v o . - %
B = 2*:/‘/’”: Ekil“‘l' ”',i'7=2‘0“/:
i i
/

i I

EIEY
¥

we obtain (11.17).
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* The last two variants (11.14) and (11.16) of the equations of the Bubnov-Galerkin
method are suited to actual calculations.

In the equation (11.16) the part with the non-linear terms has been transferred
from the right-hand side to the left-hand side because the external forces are pro-
jected on the directions of the coordinates of the deformed shell, whereas in equations
(11.2) and (11.7) they were projected on the direction of the coordinates of the un-
deformed shell. Denoting those projections by the respective letters without asterisks,
we obtain

Xt =e* X=X, (1 + 60) + Kooy + Xy,
"(J‘:X1721+X:(|+en)+ Xsuz, (11 18)
O* =m* X = X E, + X,F; + X Fy.

We can write similar formulas for the vector ®:
D= (I +eyy) + Pres + Py, . (11.19)

Py* = Doy - Oy (1 1 eng) + Pywy
OF = DE, + OyF, + yF

where ©; and @, are the projections of the vector of the contour load on the directions
of the coordinates of the undeformed shell, Formulas (11.18) and (11,19) take into

account the twist of the external forces in the deformation.

If in (11.16) the contour integral

- | dH*m*
’c=j{($f'<..+ H;:‘
<

)(c‘.*\m + oy + mtw) + Z(c‘r' ~-G*Yn3 3.»}4.. + (& H") s, (11.20)
[

b

vanishes, we obtain the following three equations because the variations ﬁui and
8w are independent:

j‘j‘(?.ﬂlbu,du.dﬁ =0, j:g‘(7.4).6a,d-.du, =0, j‘j‘(fl),&wda‘du, =0, (11.21)
These three equations are called "equations of the Bubnov-Galerkin method" be-
cause these authors /IIl. 7/ used variational equations of the kind (11,21) for the
first time. As distinct from the Ritz method, expounded in the preceding section,
the Bubnov-Galerkin method may be used, under certain conditions, for any differ-
ential equation,

The contour integral (11,20) vanishes, for instance, in the following cases:
1. When the static boundary conditions are fulfilled on the entire contour;
2. when the contour is clamped (-7: 0, En;l:i:[));

3. when the contour is hinged (v=0 G*=0o):

4. when the contour is freely supported (w=¢*=e,*=0), or for mixed
boundary conditions, containing the above-mentioned cases,

When solving actual problems by the Bubnov-Galerkin method, one takes the
functions (10.28) as trial functions for u, and w, as in the Ritz method. By intro
ducing (10.28) in (11.21) we obtain the required number of equations for determining
the constants. The algebraic system obtained will be non-linear; therefore the dif-
ficulties arising in the solution of # non-linear system remain. In general, the
reduction of equation (11.16) to (11.21) is not obligatory, because if the static
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* boundary conditions are not exactly fulfilled, one must retain the contour integral
and thereby take into account the work of the non-equilibrium forces,

The expression (G*-G*)3 E‘ for the composite state of stress may be simpli-
fied. In fact, by substituting for § o, from (11.17) we obtain:

(% — G9) 85, = (B — G ) by — (2% — %) S} e

Ll

As for small deformations and for tzx~«,

(% — 0%)Y) subuts ~ Mugx ety ~ Eitfu, ~ Eteu,,
]

the quantities (G* —-G*)X x, du, are negligibly small in comparison with
®.* 3u, ~Ete, Su,; hence:

(@ G*) 5 Sy = (8% — G°) S mpe. ¥ (11.22)

The question of convergence of the Bubnosy -Galerkin method for linear problems
was examined in the book by S. G, Mikhlin /IMl. 4/ and for non-linear problems of
the theory of shells in the book by I. 1. Vorovich /IIL 12/, It should be noted that
the convergence of the method will increase if the functions (10, 28) satisfy all the
boundary conditions. The convergence is usualy examined in each concrete case.
The theoretical foundation of different variational methods and their application to
a series of problems of the linear theory of elasticity has been given in the monograph
by L.S. Leibenzon /IIL. 5/. The question uf the interrelations between the different
variational methods has been examined in the book by Ya. A. Pratusevich /i, 6/.
The same book also gives applications of the variational methods to many problems,
The principal types of linear problems which can be solved by the Bubnov-Galerkin
method are given in Mikhlin's book /IIL. 4/. Somne indications of the application of
this method to the approximate solution of non-linear differential equations are given
in the paper by A. R, Rzhanitsyn /IIL 7/,
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§ 12, Introduction of Symmetric Components of
Forces and Moments. Stress Functions

Let us introduce new components S” of the tangential forces by the equations

2
=Syt 3 e (12.1)

Suml

Introducing this in the sixth equation of equilibrium (7.6) we obtain §; =8, Le,
the forces Sy are symmetric. We introduce also symmetric components of the
moment Mlj by the equations

My =My +Qy, (12.2)
where we assumed that
My =My + My 2Qy = My — My (12.3)

The quantities Q‘ =-Qj; may be expressed in terms of S and M, after introducing
(12.1) and (12.2) in the additional non-differential relation of the {ype (7.7). This
relation is sufficient, since Q;; = 0, Q,= —Q,;

We shall now write the equation of equilibrium and the static boundary condi-
tions for symmetric components of forces and moments. Introducing (12.1) and
(12.2) in the variational equation (10.5) we find, after the cancellation of similar

terms
7 =j5 ZZ(S,,&U + M) da, (12.4)

where 8A may be expressed by (10,13); 851 is the variation of the components
of tangential deformation; bk‘; = bx‘ is the variation of the components of the
bending deformation. Therefore, the variation of deformation energy for new

forces and moments is also of the kind (10.7) provided T’l‘; # T*}i s M’g‘j ¢ M’;i.

The above-mentioned fact is one of the advantages of the new tensors of
forces and moments. Another advantage is that by introducing these forces and
moments, the sixth equation of equilibrium is identically satisfied.

Taking into account that

—

A AORy = —bby = 8 (P ) =y 0 4 Py
and that the equality
D sparar = B SFT
[ ()

holds for symmetric S, , the relation (12.4) may also be expressed in the form

ij*
U= 52 {(Syry + mLMy) &) + My, tm) dadey,
)
Further, by substituting for mlJ for the deformed surface from (2.22) we obtain
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* 22 M,‘mJ & _222 Mjé; k,,,, br ]

ios
We thus find:
M_SSZE ! (r,,r, W+ Myertm )du (12,5)
T
where we set
Fy=Ss+ 3 Mgk, (12.6)

Formally, equation (12.5) is identical with (10.1¢). Since (10.26) is derived from the -
latter, a similar equation may be analogously obtained from (12.5):

A_ - -
o dHm" \ A= dA" @ 34, °g. vt ) o
j.{ (m —gat ——ds“ > tv + (G - G) nrim }ds +E§(——v&;‘~— e —-;.—2’- + A, A;‘A\) Jodadr. =0, (12.7)
[ .

where we set

‘ :ZT\"' o (12.8)
=]
=B+ 2 =YY TiEm + 70 T Qs (12.9)
I3 :
G =¥% Mynn; (12.10)
iJ
—22 My (12.11)

Here Q; isthe analog of the shearing forces connected with the symmetric moments
M;; by equatlons of the form (10.20)

APAPQ = AC A Mt 4+ TN o (M n A4 5 (12,12)
L 3
Thus, the variational equation (12.4) leads to the following equations of equilibrium
for symmetric components of the forces and moiaents

(APT + (4283 + A FAP K =0 (12.13)
(APM )+ (APMY ), + A% [ 2] + A% Va8 + AP ArL =0, (12.14)
M :a.Mu — My, MY :I'MII ~ 8 My (12,15)

and the static boundary conditions

- - dH m*
By - EZM.,M (12.16)

By replacing T by T and H by ﬁ the boundar; conditlons may be obtained in
scalar form trém (8. lb) The scalar form of the equations (12.13) and (12.14) is
identical with the corresponding equations (7.3), (7.4), and (7.5), after replacing
in the latter T%; by t5. N% by Q,, and M% by M. Therefore, using (12.6)
we obtain:

(AT, = (AR Tud g+ Tadig - Tody, + AA(5Q: + (12.17)
+ER0+ XM =0 13
(AQ)a+ (AQa + T, T, + X =0; (12.18)

iJ

(Al + (M) s+ Mudyy — Mads, + Ads (M, — Q) =0, 12 (12.19)
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* By permutation of the indices 1, 2, another form of equations (12,17) and (12,19)
may be obtained.

Since the right-hand side of (12.4) is a total differential, we may write:

= M= (12.20)
where W is the deformation energy density of the shell, Therefore, 8, and M
may be called the energy components of forces and moments, corresponding to the
components of the deformation of the surface e, and x,.. The symmetrical forces
and moments are convenient for theoretical wor)k in which the sixth condition of
equilibrium should be exactly satisfied, The symmetrical components of forces
and moments for any deformation have been examined in the author's work /III. 3/.
It was shown there that for arbitrary deformations, the energy components of forces
and moments may be determined by Castigliano's formulas. For small deformations
they have the usual form:

ow (14
iy sy (12.21)

It was further shown in /III. 3/ that for any deformations, the energy components of
forces and moments may be expressed by three stress functions instead of the usual
four, provided there are no external surface forces and moments. We shall prove
that for small deformations. If X = L = 0, the homogeneous equations of equilibrium

(AP0~ ARG =0, (A ) + (AFMY Do + (12.22)
+ A [716] - A2 (7m0
may be satisfied by substituting

ARE = 2. AtE= —@.: (12.23)
AR [T = AR+ ] = - b (12.24)

where > and ~ are two arbitrary vectors:
F=e0 R et ke b= +a by + My (12.25)

¢ will be the single independent component of the vector because after multiplying
scalarly (12.24)by m*and taking into account that M!m* = 0 we obtain:

Ate = m *‘—wll Altpy = - ’;‘{‘n (12'26)

Here ¢, and §; may be found by differentiating (12,25) by means of (2.18) and (2.22)
as follows

P A (PP, 4 00y + mD) f =AWV, + (12.27)
LWy = WY 1.2
where we set
104, | 4 0AT
‘LH=A.' o1, ‘T‘AI,AI g + k¢
byl O b 047 . (12.28)
T A% &, AAS e 2
P L B 12 (12.29)
t A" s, ny: 1P Pl .

from this, o,, ¢, @,.. may be determined by replacing 4, ¢, ¢4 by #. 9. ».
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* Introducing (11.27) into (12.26) we find for 4, and s

o =¥= Z; g’ knh k':uz*n
A d

1
== SR b

(12.30)

Introducing the vectors é‘ and _M-'i in (12.23) and (12.24) according to the
formulas

G=3 (S + TEMa)7 + 70 {12.31)
] )

Iﬁn' =l_:'Mu - ;i.MI."- ﬁn'=;s‘l"n —';;'Mn (12' 32)
and equating the coefficients of the unit vectors ?‘i‘ and m* we find:

2 2
Su+ 2 Mkl =Pn. S+ 21 My = n.
i t
2 (4 : *
Sut+ Y Muky=— Py, St I Maky = Pa
i i
Q=% Q=-9, M =Vy Mp=VY¥,
My=—V;—¢, My=--Vyu+e

From the condition M , = M, it results that
20 =Wy - ¥y (12.33)
Therefore,

My =¥, Mn=W¥, Mllell::—%(wll+\le); (12.34)

1 v, ¥, dA4g*

Sy ==+ = kW — Ve,
S A e, AnA oa + A 3¥in T -1 (12 35)
[ ¥, A" ‘
Sam = e e e Y e
12
Q= — (¥, —WVy) + ‘n"ﬁ —~ RV,

?A‘ 82,

From the latter we obtain S 220 S.. and Q, by periautation of the indexes 1, 2. The
condition S ,= S, will be satisfied after subsntutmg for v, and v, according to
(12.28) and (12 29) and then using the Codazzi ccnditions (2.27) for orthogonal
coordinates.

Thus, the vectors of forces and moments ire expressed in terms of one
vector Y. ¢ 4. ¥
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§ 13. The Variational Principle for the State of Stress of the Shell

As shown in § 10, several geometrically possible states may be allowed from
the point of view of the energy functional. Let us construct a functional for which
several statically possible states may be allowed, i.e., states that do not disturb
the condition of equilibrium inside the shell and at the boundary. In the theory of
elasticity, the corresponding variational principle is called Castigliano's principle.
This principle has been worked out for the theory of shells by N. A, Alumyae /. 2/
and K. Z. Galimov /IIL. 3/, Another derivation of Castigliano's variational formula
for homogeneous and laminar cynlindrical shells has been given in the paper by
Wang Ehi-The /111, 8/.

Castigliano's variational principle for the three-dimensional problem has
been expounded in its general form in the author's paper /IIl. 9/. A mixed variation-
al method for the three-dimensional problem is given in the paper by Reissner
/111, 10/; the application of this principle to the theory of finite deformation of
shells is given in Galimov's paper /IIL. 11/. Another variant of the mixed variation-
al method for the theory of shells has been given by N, A. Alumyae in /IIL. 2/.

In this section we shall describe the variational principle for the state of
stress of the shell (Castigliano's principle of variation in generalized form) for
small deformations and arbitrary bending.

* Castigliano's variation formula may be obtained from the energy functional
by using Friedrich's transformation (known from the calculus of variations) as
has been done in /III. 8/. We shall, however, follow the methods developed in
/111.3/. We shall first derive some new relations which will be necessary for the
following development¥* .

One of these relations will be obtained by assuming in {(11.12) that f = v (where
Vv is the displacement vector), i, e., assuming that f, = u* and f; = w¥, Here u%
and w* are the projections of the displacement vector on the coordinate axes of the
deformed shell. For the guantities ¢, 2,, and ;, given by (11.9) and (11.11),
we find:

g=er Q=0 A= e § Ers)i (13.1)

Smm]
where w¥ and e"‘jj may be expressed by (13.37)*.

The integral relation (11.12) is also valid for the symmetric components of
forces and moments, introduced in § 12, provided that T#*, and M¥%; are replaced
by 'i‘iv and M‘J . Taking into account (13.1) we then obtain from (11.12) the integral
relation for the symmetrical forces and moments:

* Some relations from the theory of deformations of a surface, which are used
here,are given at the end of the section.
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[

5 ()?(T—M,m.“——M:«ug')dv#-f(_‘; Groy Yds + i | =
v C
. C

A .
= (jz( Tyey + M, 5 de=
o

e . (13.2)

=552[s{, o+ My (2:, + Zk;c,',)] s,
e 0]

where },, were taken from (12.6).
Here x;; may be expressed by the last of formulas (13.1), and
w;z @y w0yt

In this section we shall use the symmetrical components of forces and moments be-
cause in this case Love's formulas of the type (9.3) are exact in the first approxima-
tion.

Therefore, it is not necessary to choose any variant of the elasticity relations
with additional terms depending on parameters of the curvature.

It should be noted that according to {13.42)
2
Wt Y A=y (Am — 1) &y
E

and furthermore, by using (13.40) we obtain

. . ! . . | 9 dv ] ! Sy W g
zs,,(,,_ 228.,(0,/ +e;) = 3 Z[e,, + e Taarh e JS,, + 22"’"‘? e o =
id i i ¥ ]

Sy g & o
_z<s,/.,,+ T aAs os, e ) =LY
s

Taking these intc account, we may write the integ:-al equation (13.2) as follows:

- - = ~ |
i‘j‘()_("/ — Miw* - Myu,*)da + ‘(Q,u - J“m; ) ds + Frwel =
<, ¢ le
4 Siy v __ 3
=jj‘2[sij." + Mz +M'—AJ“ Com d-zj + My (1 —mm*) &y -Jdu. (13.3)
T [P
This relation holds, therefore, if the condit:ons of equilibrium (12.17), (12.18),
and (12.19) are fulfilled. In (13.3) &, is the vector of the external load at the contour,
G* is the external bending moment at the contour, and H* is the external twisting
moment at the contour. For small displacements (13.3) gives Clapeyron's theorem
for the linear theory of shells,

In addition to the relation (13.3) we also neec Lagrange's equation of variation
(12.4) for symmetrical components of the forces and moments. Taking (10.13)
into account, we may write this equation as follow ;:
ﬁ-(i 30 + (M m*im=) da .Ljni,. T+ G* A3m®) ds +
h &

:‘S‘j 2 (Sisiy 4 Midny) do, (13.4)
C

[

+ B mte

Here
M=Me — Ma®. (M, m]3mn: = T M@sme,

Fme = ¥ g vt (13.5)
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One more integral relation may be obtained by means of (13.3) and (13.4).
Let us vary {13,3) with respect to the forces, moments, and displacements, and
subtract (13.4) from the result,

Then, taking (13.5) into account, we obtain:

o={f S o o
. i ‘
+ f(a»&, - Wy bO* —za’n‘%“'_l ;—?— Sh;‘) ds +
. (4
i

[

Sas Aeziznl [ (13.6)
+ (WRH* + H e bm¥) = 3 \ {’U”t’i + M, +
e ! E
& Al e
Sy d dv - 7
GI- i  — . — 1— 3
PO TA A o am T M T MR J}da'
where U represents the left-hand side of this equation.
Furthermore, we used the equation
— - - Lt 3V '
W m—em, e =k T (13.6)

Howr = V.

But, since by (12.21) the variation of the work of deformation is

. ow . W .
14 —2({91—! a8y + 7‘-”,; A Al ): 2(5;/ 38, F oy h A,
S [

the above equation may be written as follows:
Sy dv dv

= EANNNY ke ds (13.7)
U_bjj.{w*_z{?‘i’/’)' e ou + M, (1 —mm )L,/]}/d.

Ly

where W is the work of deformation expressed in terms of forces and moments.

Let us look for the conditions for which the equation of variation (13.7) holds.
For that purpose we have to do the inverse calculation, The variation of the right-
hand side of (13,7) will be :

3Sy  ov dv _—
2{‘%,‘3511'*-1.‘/5%/#-%‘4]—_,‘ 6—1!';;+(1 —mm )k,jaM“,}+
i
+ Syt —— 9 0v_ Ky Miji(mom *)
ij 24,747 ds, . da; /* M i(mm )y

i f

The form of the expression in the first braces is analogous to the integrand in the
right-hand side of (13.3). Therefore, the expression in braces is equal to ‘,-,‘“’:‘ T+
+%,8M,), where the forces T;; have been introduced according to (12,6). As a re-
sult, the right-hand side of (13.7) becomes:

Wz(ez, b, s My da

o 10
¥t {1 dv_ dv - -
Y YT Mk 2 Pi=1 2
+.S~\Z{SUDL\L’A1’ AI" de; ’ day Mo i 'ﬂbm‘} =L
A i

(13.8)

Here the first integral may be transformed by (11.8) provided I is not zero, because
the displacements vary. We introduce the differential operators
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=(a s )0+ (4o )z + Y LS
+ AP AR (48Q, +lt:z| Q+2.% T; (13.9)

Ly= (A" 3 Q) + (A, 8Q02 + a8 %, 0 x,m.
¥

in (11.3) in terms of the variations b'f‘”

After substituting for T+ and M*
and f, = w*, we obtain

- 1
and 3M; and assuming thatf =¥, f, = uJ{

- ~
1= ﬂ.(t,u,« + Lyn® + Lyw*yda,dag = _j‘jzv(,;g 9‘.}.+ b Mdde 4

LW

+55{2u1' 3X,* — w* B M)+ n* D X,‘} do 4
Ol (13.10)

+S(2u,-wn + oWt X — ..,‘--m\» ds + uﬂbH‘)
/ 4
[

Here 3%, and s, are the variations of the internal forces at the contour, and
3G and 8H are the variations of the internal bend:ng and twisting moments at the
contour. We now introduce in (13.8) the value of -he double integral
P

UEw“/a?U+:, *M;) 4z and equate the result to the left-hand side of (13.7).

D]

Omitting the details of calculation, (13.7) becomeas:

(]
( e B P S i
H CXTREE M AT S )-[-v X Bm‘}d:+ (o Wiy
:A
t=t

- ﬁn,}}? +.U{Jz 3, ~2u,"6®,‘ —w by —w (3G — 8 GY) —
c 4 . (13.11)

- R A\

Tx -1 90 s \ .

— Y G*n A ?em ds == — Lvu"+L,w*’da‘dugv
¢ /

il J

i
{ i dv v I
+5‘EE{S”I\£‘-E . o . o ) ~ Mg tymim }da.
LIV}
Here we took into account that 7y X=v ;‘, (23X + .28 + 0 (M3 X, +

Since the forces and moments 'f'ij and M, satisfy tte same equations of equilibrium
as T;j and Mﬁ, we have for Tij and M;; the integril formula (11,2). Assuming here

j
"“); s =T (13.12)

fi=vaz* =Za<.4;—' —

da,
] =5j{2(xl*7’ Be* — M, 2) + X518 f;"} ds +
Ol

+5{2(¢,*Fs e? = G* Q) + By &ai‘}a; + H* Ui m*
c i
=5J‘ {S.',' 2 + My (:, +S‘k;, Q) fda.
v -

For brevity, we denote here the left-hand side by J. We obtain the quantities v,
and 2; 2, and <; from (13.12) according to (11.9) a1d (11.11):

we obtain:

(13.13)

‘¢
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ORIGINL ¢
or POOR Qd“lhhi (

v mt dv 8eg* do
4= e 'd- +va, 9,,__—“1-_—. P +9 &y
(ij=1 2
~ 189 (-1 13.14
1,1=—-—-._’__( ) 0A‘ Q ( )

Ax 03 A” A:, — Oaa "
Here we introduced the vectors

- 1 Ay (=
_1 Rg D7
=3 3q T arAL, daa .
By using (13.14) we find:

XMU (;’[j + E £ ) =Z My ( «j + 2 Ky Bis v)—
i

—1)”/(e3_, —gJ_) A\ Am*
~ ) My VT e Bl
L
2

"3 L+ Epbm (13,15)

where we set
, 1 (e (= oA o
ETA T e TTAFAL sy, (va). (13.16)

Using the differentiation formulas (2.12) and (7.3) for the unit vectors, the previous
equation simplifies to

E”U (.':11 + E k:.: Q) =
i r (*)

_EMU {Au +2kw aj,v— kU mi m"}

i

By virtue of the symmetry Sij = Sji we obtain:

Therefore, ~
1 dv dv —_
Sy Q= =
2 " 2 M \aarap e o ) +“"} (x*)
o

Taking into account (¥} and (**), (13.13) becomes

u, = (S (s.-a( : LA a—”——> My, Ea?}aq—
=) 2 PP\247 A dap O iy
e L
Eg E(f,,u ay+ My )da.

After subtracting (13.17) from (13 11) we finally obtain:

I+ (S(EL, u + L,w*> da, duy + I, =0. (13.18)

=1

I =S{zu,* 3P — B+

< (13.19)
$wt (@ — B) — w3 (8 -G }da+w A(HY—H%)

(13.17)

Where we set

dn
il (13.20)

2
A— - ——
+ “.E(T;,-u a; + My ) de +5§2Mf v a;de,
c J
s ) B

Il

2
h= {2(«»:. — @) TEe 4 (P — ) DA G -0 Lame s
c

+GT T ds 4 (H* — AT
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* where

dv n dv - Tn
—_—= y—+.— q,= Ry
dn ;v Ogy " o

-t i<}

@], ¢, are the projections of the external load alceng ?i* and m*; ¢ and ¢,* are the
projections of the internal forces along the same directions; G* and H* are the in-
ternal moments at the contour which may be expressed by (8. 12) and (8. 15),

Let us first consider the case when the displacements are not varied: §v =0,
i.e., when the integral [, vanishes, Equation (13,18) will be satisfied if the varied
state is statically possible and hence the conditions of equilibrium

Li=0, Ly=0, {,=0. (13,21)
are fulfilled inside the shell and the static boundary conditiong*
YO =0 3L =30 38 =36 AT - b =0, (13.22)
are fulfilled at the contour,

It should be noted that in deriving the equation of equilibrium (13,21) we used
the Gauss-Weingaerten formulas for the deformed surface, thus assuming the con-
tinuity of the deformations of the actual state. Tlerefore, in the functional (13.7)
only those statically possible states are allowed which do not disturb the conditions
of continuity of the deformations €y and x;k of the actual state.

The contour integral Ic in (13.18) vanishes for other boundary conditions, for
example, if the edge of the shell is hinged or clamped, or for some mixed boundary
conditions.

Let us now consider the case when the displicements are varied and the
allowable states are statically impossible, i.e., vthere the variation of the forces
and moments disturbs the conditions of equilibriwz inside the shell and at the bound-
ary. If in (7.3) we vary not only the unit vectors ¢ * and m* but also the coefficients
of the first and second quadratic forms of the undrformed surface, we shall find,
according to (13.14)

-\ . - N . AR .
a; = 073 (A k) A2 ay=(— 1)+ ey o ( 3= 00__3_1) — m( A k). (13.23)
FET)

With these we obtain the second surface integral of (13.17):

((\,A - . (- ¥y~ o j 1 4
([t s I3[ E i 22)-
A ol

[N}
-1y A
A;‘A:_.d’!wl‘ uay }dz (*)

(T e {

LAY BT I AT )+
CA RO LA
a '/’J + My A dc;( A

Let us indicate the subsequent course of calculations. The terms My A 709 (T a)fos;
have to be integrated by parts by (10.19), and then the equation of moments (12.18)
should be used. After introducing the result in (12.17) and subtracting from (13.11)
we obtain

)

I +L({2L,»' w4 Ly wr) day d3; + Jp =0, (13,24)

S

* The latter condition relates to the localized moment.
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* where IC is given by (13.19) and I' . is the contour integral

N . o R dv, - ~ . .
/c’=§{2(%~¢i*)vae,*+(¢;,f‘v,*)v pme —(5‘*‘3"ﬁ‘"‘}‘“+”" — H) v dms (13.25)
C

izl
In addition, we introduced the operators

A A " « A . N e —

Lo =34 Ta)y 45040 T, + 3 (4] If“”) —R(AL Ta) F AT A (R Qi+ A G+ GO LA (13 26)
; . A
L =8(A Q0 + 3 (A @)y + 50k 1) 48 Xy
Ll

Thus, if statically impossible displacements and states of stress are allowed in the

functional (13.7), the expression (13.7) will be valid, provided that

=0 L;r=0 L;=0 (inside the region) (13.27)

and that the static boundary conditions or the geometrical boundary conditions (if
the edges of the shell are hinged or clamped) are satisfied.

The variational equations (13.18) or (13.27) are rquations of the Bubnov-Galerkin
method. The first one is formally identical with the equations of the linear Bubnov-
Galerkin theory of shells.

We shall derive one more equation which is similar in content to the equation
of the Bubnov-Galerkin method for the elasticity relations and which we shall apply
to the theory of flat shells, We subtract (13.11) from (13. 6) and obtain

2 2
X
j‘g{z(q‘ EX*— 0% M) da K(Zu;‘& ©F - w,MGY)ds 4 0 H‘! =
¢ -1 & =i ¢ (13.28)

35; dv_ du —
ZS S 2{5"”" M T ey o TR g}

Here we assume that the equations of equilibrium (13.21) and the static boundary
conditions are satisfied. Therefore, S, and Ml.j may be replaced in (13.2) by 5Sij
and BM”_. Then the left-hand side in (15.28) is equal to the double integral

2

5 [2[-; VS, + (1,, +2k,_, ¢,‘I) 3 M;,»} d,
- Sl

v Qg
and (13.28) will therefore be equivalent to

2

. 1 dv dv N A -~ .« » -
eyt 2A A " ds; day Sy + | ky e t (l—mm ) ky | My pds =0.
a [y

Sl

From this, after simple transformations by formulas listed at the end of this

section, we obtain
j.SE{("u‘ - ‘i/‘) 88y + (’-Ij — ‘1{) My, } da =0. (13.29)
o 4f

It is evident from the deduction just outlined that ﬁij and %;are here the components
of deformation of the surface expressed in terms of forces and moments, and ¢g;;
and x, are the same quantities expressed in terms of displacement.

Since the variations GSij and 8M,, are arbitrary, the elasticity relations fol-
low from (13.29).
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* The variational equation {13.29) also holds if the allowed states are statically
impossible /III. 8/,

The functional (13.7) may be obtained from the energy functional by means of
Friedrichs' transformation if the coefficients of the equations of equilibrium are
considered to be expressed in terms of the displacements. Therefore, for geome-
trically non-linear problems, one may also take as allowed states of displacement
in addition to the states of stress of the shell,

In concluding this section, let us consider the functional (13.7) for a parti-

cular problem, namely, for the case 3X = 0, M = 0, and the contour integral

J’(;ss,_ w8 T8 G+ ;_ia;.« ) es=0 (13.30)

vanishes. Then the following theorem holds: the actual state of equilibrium of the
shell differs from the statically possible states by the fact that for the former the

functional
Sy & — }}
R= w S was T Ml —mme d:
H{ +Zj[2A;'A/‘ a3 T (1 —mas) | ae (13.31)
has a stationary value 8R = 0,

The condition at the contour (13.30) will, fer instance, be satisfied if:

1. the contour is free

_;:d‘rOI (13.32)

|

2. the contour is clamped

=0, w*=0 (3m*=0): (13.33)

<y

3. the contour is immovably hinged
v=0 O*=o; (13.34)
4. the contour is freely supported
w=0 J*=0 8}, =%} =0 (13.35)

5. the boundary conditions are mixed, congisting of several of the preceding
ones,

If these conditions are fulfilled, the functional (13.31) enables one to solve the
problem by the Ritz method. The theorem holds ¢1so if the variations of the forces
and moments are statically impossible /III. 3/.

Let us derive those relations of the theory o’ surface deformation to which we
referred at the beginning of this section. In order to simplify the derivation we
shall neglect the shear in comparison with unity, :ntroducing the same error as in
the equations of equilibrium, The derivdtion of th:se relations for finite deforma-
tions in general coordinates has been given in /0.%/ and /IIL. 3/.

We resolve the displacement vector ¥ along ‘he unit vectors e* , &% , and

m* of the deformed shell: ¢= €*u* + %% + n*o*.  Then the derivatives of this vector
will be:
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2
o (Y it e =1,2;
doy =M (z ia ta" + mte, ) (i=1,2) (13.36)
Rum]
Here we have used the formulas (2.18) and (2.22) for the deformed surface. The
quantities E*ik and w* may be expressed by formulas of the type (3.5) for this
surface: o 1 ou* ut _ OA*

= e Y arar om i
o
By (13.36) we find for the unit vectors Ei and m the expressions
"= i {(s,. — e,‘,)?,‘ L LTS AR AT ASAY.AS (13.38)

imm]
where E* and E* may be obtained from formulas like (3.20) by substituting ——e"‘k
and --m* mstead of e, and (5 W lfori=X; 8 = 0fori# k). The expressions

k
(3.13) may be wrltten as follows: !
~ dv , dv  du

2'!&—?1-&—*-8. F;f+ Rl (13.39)

Introducing —g:—[ and €, from (13.36) and (13.38) we find

.« . 1 T 00 s . e e s
Zp=ey ey — A oi:'—' —;’%:'u‘{“ D NENT RS (13.40)
J=1

By adding two different expressions for g, we obtain
PR X T (13.41)

Formally, this expression recalls the formulas of the linear theory. In order to
find other expressions for tl:xe components of the bending deformation, we have to
calculate the derivatives —‘;i.
3
Since m*i‘ = E*Ei , we obtain

dw*  —4 de o dm* Lo
o =—m E“l/—' "—daT U, j=12).
Substituting for €. from (2.18) and for E*} from formulas like (2.22) for the de-
formed surface, we obtain:

Ak (e ~1) 4 4% e ot Ay

A da, ul en Aot T a4, 0, LU (13.42)
L S (e—1) + & ¢ R

A| d¢| 12 22 "N A, N 33‘

where the quantities &, were taken from (13.38).

Using (3.31) we obtain £4;— &, =#;(£;,— 1)~ »; Introducing this expression in
the previous equations for the components of the bending deformation we obtain

1 de* wy®  JA -2
l:|:kn(53*”'*z"’—;‘ —ﬁ"i"'kn"u“’klz"l 1.2 (13.43)
\ )
U Qo w* 24
e o: Aii, (,‘:—'J"’ule*"nz"q0
1 1 1

ay =Ry (Ey - 1) -
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* The quantity E; may be expressed in terms of the rotation angles w,; and m,;
squaring (3.16) we obtain

E=V1—wu?— o

where we neglected elongations and shear in comparison with unity. %
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Chapter IV

CLASSIFICATION OF PROBLEMS OF THE THEORY OF SHELLS
AND SIMPLIFICATION OF ITS FUNDAMENTAL RELATIONS

$ 14. Small Bending. Linear Theory of Shells

The general relations of the preceding sections have been obtained by assum-
ing that the deformations and the relative thickness of the shell t/R may be neglected
in comparison with unity, i.e., assuming that

1226, L 1, ey, HRKZ, (14.1)

where £_ is the limit of proportionality of the material of the shell. The symbol ~
shows that the compared quantities are of the same order of magnitude. R is the
smallest radius of curvature of the middle surface of the shell, x is the largest
value of the guantities %5 and ¢ is the largest value of the ¢,;. For particular
cases, these relations may be considerably simplified.

For a; we shall take such dimensionless coordinates as to obtain coefficients
for the first quadratic form of the surface o of the order of magnitude of L.

A~L i=1or2 (14.2)

where L is the characteristic dimension, for instance, the wirfth of the part of the
shell under consideration or, if we consider the entire shell, the minimal radius
of curvature,

We shall also assume that the geometrical parameters of the shell vary
smoothly i. e., that

AL/SA[; /l‘j,..Skl/, (14.3)

where, as in the preceding, the comma before the index j or m denotes partial differ-
entiation with respect to a; or a., respectively.

We say that the bending of the shell is "small" if the rotations of its linear
elements in bending are everywhere negligibly small in comparison with unity:

w; <L 0. (14.4)

In this case, the maxima of the tangential displacements and the bending may be of
the same order of magnitude as the thickness of the shell, if they are slowly varying
functions of o , whose derivatives with respect to o, are smaller than or of the
same order of magnitude as the functions themselves. The maximum deflection of
the points of a cylindrical tube compressed by an external and internal pressure
uniformly distributed over its surface, may, for instance, be of the same order

of magnitude as the thickness of the shell. In the contrary case, we obtain accord-
ing to (3.5) and (3,13):

€33 =WRn; enc=en==w/R>>HR> ¢, if w>¢
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From (3.5), in the case under consideration the quantities e, will also be small
{of the same order of magnitude as €, or smaller’).

If the moduli of the projections of the displacement increases €72 times on
differentiation with respect to a,, we get w i~w»p“"2 and according to (3.5) and
(14.2) ’

o~ Wi/l ~ % u;‘h,

In that case, we may assume that, in our theory, based on neglecting (in
comparison with unity) quantities of the same order as ¢_ or t/R, the condition
(14.4) will be satisfied only for deflections which are small in comparison with the
thickness of the shell and for which w g te "2 The tangential displacements uy
are such quantities and the e, are negligible in comparison with unity,

Therefore, if the condition (14.4) is satisfi:d with the degree of approximation
assumed, one can use the formulas of the linear theory of shells:

Sr=eyy, 283=en+tey, l—,a (14.5)
-—
AtAzey == — Ay — Arqez, A A= — Agwyy 4 Apgen,

where e, and m;, may be determined by (3.5). One also has to put kf = k“+x“zkij
in the equations of equilibrium (7.4), and in the boundary conditions the components
X* of the external stress in the directions €% and m* of the deformed shell have
to be equated to the components X, of that force i1 the directions e; and m.

Let us consider the possible particular states of streas of an entire shell
or of a considerable part of it (when L. ~R).

A. If the bending elongations are negligibly small in comparison with the
elongations of the middle surface, we shall call i* a "membrane stress state", In
that case, "the membrane forces™ may be determined from the approximate
equations

(AsTi)a +(A: Ta)a 4 TRAL: — Thd-1 + A 1A X =0, r? (14.6)

Thkys 4 275 &2y + Torkez - - Xy =0, (14.7)

Their components in the directions e*, e*, and 11* after deformation may be
equated to the corresponding components along the directions E! , éz , and m
before deformation.

B. The bending and the membrane elongatisns may be of the same order of
magnitude. We shall call such a state a "composite state of stress". In particular,
deformations of this kind may occur in the neighbsrhood of the fixed edges of the
shell ("edge effect"). In this case, there may be considerable local variations of
curvature even with small deflections, because tle deflection function w increases
considerably upon differentiation with respect to 1,.

From (7.5) and (9.5), we have

Ty~ Ets, M) ~Etx, AN*~M; , ~Ett,
i jo k=12,

Evidently, the maximum elongation by bend ng occurs in the extreme fibers
z = tt/Z; the order of magnitude of this elongatio: is tx. So, in this case
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tx~q, ﬂ;j~l. (A‘T;.).,,l ~ LEts  +

AANPKy ~ LEOK %y~ LEtery

Therefore, in the first two equations (7.4) we can neglect the terms containing N¥
and use the approximate equations (14.6)*. In the third equation (7.4) the shearing
forces have greater importance because, for instance,

(ANP)y ~ My g~ Efx g ~ By
may be of the same order of magnitude as the terms

Ay T by~ DEtR .

In fact, the ratio between these quantities is ~te, ”/Ls . According to our assump-

tion, & >>e, but t/L<<1. *

Therefore, in the case considered we have to use, instead of (14.7), the
equation

(AeN1*)a - {AIN2*) 2 — AlAa (T b + 270 ka4 Toka — X3)=0 (14.8)
where N* is given by (7.5).
C. If the bending of the shell occurs almost without elongations,
e < fx, (14.9)

and the simplifications of the cases A and B will no longer be valid, This case
corresponds first of all to pure bending of the middle surface of the shell. It will
occur when the surface ¢ is not closed and is not fixed to some contour which does
not lie partly on the asymptotic line of the surface**,

As we know from the theory of surfaces, a line along which the curvature of
the normal section of the surface is zero is called an asymptotic line of the
surface. In particular, this property belongs to the straight-line generators of
developable surfaces. Cylindrical and conical surfaces are the simplest surfaces
of this kind. A thin shell which has a middle surface of this kind, with a rigid
contour only along an asymptotic line, may be easily bent and is not very stable,
Therefore, with thin-walled structures of the shell type at least one rigid fixture
is usually introduced which does not coincide with the asymptotic line of the
middle surface of the shell. In view of that, in the following we shall not consider
details of such cases of equilibrium of a shell and we recommend to the reader the
monographs /0.5/, /0.8/, and /0.15/*#%*, which deal with the linear theory of
shells. But let us note here that, in our case by retaining the terms depending on
N{ in (14.6), it is not yet possible to ensure the required degree of accuracy of the
theory based onKirchhoff's hypothesis, because whenusing this hypothesis an error ****

* A particular case, when the above estimates become less exact owing to
the mutual cancellation of the principal terms, will be considered in § 18.

** See S.P. Finikov, Teoriya poverkhnostei (Theory of Surfaces), Chap. IV.

The most comprehensive study of this problem may be found in the mono-
graph /o.8/.

* o X%

*%%* See /0.14/, /0.15/, and /0.19/,
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M, by~ Ni*.

ij»:1+ DBesides, for small bending

the bending stress in thin shells is very small; therefore, the case C for which the
membrane stresses are small is not of interest for the determination of the state

of stress. When the displacements are small, the case C is also not of interest
even for studying the form of the deformed surface. Therefore, in all cases, unless
otherwise specified, we shall determine the state of stress of the shell for small
bending before the loss of stability by superposing the solutions for the cases A

and B. This is admissible because of the linearity of the equations of equilibrium
for small displacements.

is, in fact, introduced in the expression for TT"j

Long thin shells occupy a special place in the theory of shells because there
is a small bending even when the end sections are¢ fixed. The problem of stability
of such shells will be considered briefly in the fo lowing. The state of stress of
these shells far from the edges and before the lo:s of stability may be determined
to a sufficient degree of accuracy according to the membrane theory, provided
that the following condition* is fulfilled:

2t (n? — )P0 <340 R, (14.10)

where 1 is the length of the shell and n is the frequency of the sinusoidal load applied
to the end contours of the shell. Evidently this condition will always be satisfied

in the case of symmetrical loads (n = 0) and of bending of the shell as a beam

(n = 1). If the load applied to each edge is in equ:librium with itself (n > 2), the
fulfilling of condition (14.10) will depend on the quantity 1/R. We shall call this

the "thinness" of the shell.

In order to illustrate the theory of small be1ding, let us consider an example
of determining the influence of the edge effect on :he state of stress of the shell.
Let a circular, cylindrical shell be in equilibriun under the action of a uniformly
distributed internal pressure of density p, and an axial compressive force TU,
uniformly distributed over the circular end sections.

We shall assume that at these sections, which are rigidly fixed against bend-
ing in their plane by rings, the conditions for hinjing are fulfilled. We shall take
as coordinate lines the lines of curvature of the niddle surface so that

ds? = R (day? 4 dayg?),

where Ra is the coordinate measured along the gznerating line from the middle of
the shell, and a, the polar angle. Here,

A=A =R, ku=rh=0, kpn=I1/R.

At the ends of the shell (for a = +1/2R) the follow ng conditions must be satisfied:
Th=—To, w=0 M =D(+wn)=0,
u2 =0, T:z = 0.

(14.11)

The latter two are automatically satisfied owing to the axial symmetry of the load
and the boundary conditions; besides, all quantiti:s which characterize the defor-
mation do not depend on «,. Hence, according to (3.5) and (14.5):

* See formula (7.5) in Chapter II of /0.8/.
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2oz = 1 (as 1), =0, Th=K(1 = Yeun=0, =R,
o =W /R, wz=0, 2 =—WulR}, 1p=u2=0.
Besides,
X1=X:=0, Xa=p.
From (14.6) we obtain

Th = const== — T, = Et(e;, + ven) : (1 — ¥7),
e = — vegg — Tof{l —v)/Et, Thh= —vIo+ Etes. (14.12)

Let
w=w’+ v,

where wb is the deflection due to the membrane deformation and wK the deflection
due to the edge effect. Then

Ta=Th4 T4,
and according to (14.7)
sz=pR.
On the other hand, according to (14.12)

T = — VTo+ Eeb= — v, + Etw'R.

Hence,
o =(pR VT )R/EL. (14.13)
rt . we have
Ti = Etspy = Erw* /R.
to (7.5)
AN= M), =Dxy,y .
Introdu .« expressions in (14,8) we obtain the equation for wk:

whig + M =0, 4k = [12(] — V) RY/t2 (14,14)
In view of the symmetry of the boundary conditions
w* = 3 ch ha; cos Ay + ¢3sh M, sin Aa;.
Therefore, from
@° - @ =0, w4 =0 when oy =1/2R,
we obtain
wh ch oy cosp wb sh y sin 1

Cp=- - Cg = — = A/2R.
cos?p + ship cos?u  sh?u 7 a
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If the shell is not short, then (>2R, v 2VR/t, and admitting a negligible error we
may assume chp=>shp 3 1. Besides, the moduli of the functions ch rs; and shia
decrease rapidly with increase of the distance from the end. Therefore, wKig
significant only near the ends, where [chia;|=|:hha]. Consequently, in the boundary
zone o, = 1/2R we have

w* = — wPch ka; cos (p - - Aay)/ch p.

Whence, applying the usual rule for determinatisn of the extremum of a function,
we find:

- 3
maxw“='w"ch(p— % “)//lchp where '\“'=“_T“;

max Th=pR+(pR+vTu)ch (p-- 3 %)V T chy. (14.15)

After reaching this maximum, the edge effect rapidly decreases and at Ag =p — /2
it becomes small. Therefore, the width of its effective zone at each edge is

R/ = 1.7VR:.
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§ 15. Medium Bending of a Shell. Theory of Shallow Shells

We shall denote by medium bending those cases when the maximum deflection
is of the same order of magnitude as the thickness or larger, but is small in com-
parison with other linear dimensions of the shell. For the sake of definiteness,
we shall assume that in this case the squares of the rotations of an element due
to bending may be neglected in comparison with unity

o <€ 1. (15.1)

Evidently in this case the rotations of the elements e,, and e, in the plane tangent
to o, and also e;;, are small. Therefore, it results from (3. 13) and (15. 1) that

1
€y == 8y —'2-(&1 + egz + “f).

Neglecting the squares of elongations and the fourth powers of the quantities e
and ®,, we obtain

2 1
!n’;’eu'{-?hz-}—;ﬂ?.

e1z = (1 4 eu)en + (1 + e22) s + oy s, (15.2)

These expressions may be further simplified for the case of shells which satisfy
the condition

Q= (L/RP 1, (15.3)

where 8, is the rise angle of the shell before deformation. They may also be
simplified for the case of non-shallow shells which divide themselves during defor-
mation into many shallow portions, provided that the condition of small bending elon-
gations is satisfied as hitherto;

T<e (15.4)
In order to illustrate the following simplifications of the theory, let us consider at
first the bending of a thin straight bar AB = L with small elongation; we shall as-
sume that the middle line of the bar turns into the arc AB' (Figure 10).

In view of the small elongations and of the rela-

A 8 tive smallness of w, we may write the approximate
Iﬁ;‘\i\wl‘\\\f‘i- i,’(u,e-, equalities: .
' AB' = v AB'= AB,; ]m,]zT; (a)
Figure 10 juje|warl, a1 ~|w o},

In this case, the change in curvature of an element is

small and is x“=m,/L. Asg distinct from this, during
the bending of a bar with a large initial deflection, if condition (15.1) is satisfied,
the change in the curvature may be of the same order of magnitude as the initial
curvature. Let us consider, for instance, the bending of the arc L =~ ABof a
circle of radius R from the position AC B to the symmetric position AC,B. As
shown in Figure 11, the maximum deflection in this case is
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w= ¢ty :21?(1 —m?)a%f '

where o, is the maximum rotation of the linear element from the position e, to posi-
tion €¢. On the other hand, L =Rw,. Therefore w= LT"’J(b), wh-reby, as earlier,

Uy ~ waoy,
e, G The same calculations for the projections of the displacements
are also valid for the gene-al case of medium bending of a
a 8 shallow shell. From (3. 5){a) and (b) for shallow shells:
ell"’?]zNOxz, {c)
R H|~A|'I£’k|1~1.w/R,
Akjuy ~ LRI,
0 That is, when neglecting wi{ and o} in comparison with unity,
Figure 11 we may replace the formulas (15.2) by the approximate formu-
las
€] ==y +%ﬂ'i). 0 = €35+ 12—03. 2¢; = €13+ €21 + wywy, (15.5)
where
© = w,/A),, ®=w,/A,. (15.6)
As in the preceding, we shall calculate the quantities e ,...., e, from (3.5). In

this case, according to (3.17) the quantities which determine the direction of the
unit normal m* to the deformed middle surface will be:

E1=f;.;| = -y, E;z—%; Ea=;l’H=1.
Therefore, taking into account (c) and (3.29), the expressions for the change in
curvature of the coordinate lines and for their torsion may be replaced within
assumed degree of approximation by the linear fo~mulas
A Az = - Ay — Ajgez, Al Agge — Ay, 1, 2, (15.7)
In order to evaluate the errors of these formulas, let us analyze them.
Let
k= max | bl (d)

and L be the width of the shell tk 0~ ep, and w, tte maximum rotation of an element
of the middle surface.

Furthermore, let
w,~;;, Lk"~L/R~t;,
where r and s are quantities still to be defined; o1 differentiating with respect to

the dimensionless coordinate, the quantities whicl characterize the deformation
acquire the factor ~.;‘. According to (15. 6) and (14. 2),
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Lo, ~ ~w.;‘, wil ~ :;"‘

By (15.7)

r=>X

Lagg~ o)y~

In the most unfavorable case x,, ~ k,,, because if we assume tk, ~ gp, condition
(15.4) will not be satisfied for larger changes in curvature.

Therefore,

LS =r — (e)

. ’ -3
Lay ~ Lk, ~£,,~:;,

Let us congider further the quantities in (3.5) for e;:

u [ ww
LR L N W s ST SR S 14
A, 1 p L e 3 »
w
why, = L—-Lk” ~ s’;’)*" ~ 1:; -~ ‘”:-

Thus, all quantities in the expression (15.5) for the elongation are of the same
order. If the majority of them cancel each other, our calculation of the order of
magnitude will not be sufficiently exact.

Let us consider several variants:

A. Let (“~12'~i

Yoy loen, there is no loss of accuracy. Furthermore,

r= ty ~ Ry~ WL,

L

7
and both the bending elongations and the membrane elongations are of the same or-
der of magnitude. Then the error in formulas (13.5) and (15.7) will be ¢, in com-

parison with unity and according to (e)

1 [T
.\‘:E-—A, Lk"~L(R~l‘;' ) {H

Further, according to (7.5), (9.5), (e), and (d):

. ptg b Y
AN~ My~ By AN by~ Bt R~ BN

. 1-2
Tipq ~ Eteyy g~ Etsy .

Thus, on assuming in this case an error g, in comparison with unity, we may
neglect the terms which contain shearing forces in the first two equations (7.4). It
shoulc also be noted that according to (f) in the sufficiently shallow part of the shell
(where LjR~V4, and 1 = 0) the change in curvature and hence the elongation due to
bending may reach the admissible value even for a smooth change of the shell.

B. Letr = 1/3. The main terms in the expression for ¢, cancel each other
in such a way that s, ~¢h In this case, when determining the elongations from
(15.5), the error will be of ~-;}- in comparison to unity; but since the membrane
elongations have a smaller influence on the deformation than in case A, the error
indicated is admissible in determining these deformations as well as for the equations
of equilibrium of the forces in the plane tangent to ¢. If x,;<k, or for a thin plate
with small curvature but with x,, ~k“. the above simplification produces a still
smaller error. ¥

Thus, for shallow shells or for non-shallow shells which may be divided into
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a large number of shallow portions, equations (%.4) may be replaced by the follow-
ing approximate equations:

(AeT1)a+ (AT )a+ Th As — TS Asvs + AdX, =0 1, 2; (15.8)

(ANT)s +(ANT s — A [TH R+ 2T 1k + THA% — X3]=0;  (15.9)
ky=hy+x; (hj=:,2).

Introducing (3.5), (15.5)-(15.7), and (7.5) ia these equations, we obtain a sys-
tem of three equations for u 1+ Uz, w. These equations are called equations of
equilibrium in the components of the displacement.

The elongations and the changes in curvature must satisfy the conditions of
compatibility of the deformation, i.e., Codazzi's equations (3.35) and Gauss' equa-
tion (3.32). For flat shells the former may be simplified by neglecting the quantities
of the order of magnitude of tk,, in comparigon with unity. Thus, the equations
becom:

(i) s — Araxzs — (Aria)s — Agixn =0 l._z’. (15.10)

-~

as in the linear theory of thin shells. Gauss' equation remains non-linear, and for
shallow shells it has the form (3.32) as before.

On replacing in (15.10) and (3.32) the quant:tieg «,,...,x3 by TH,.., Mh accord-
ing to (9.5), we obtain three equations which together with (15.8) and (15.9) form
after elimination of N* by (7.5) a system of six equations for TH, T, Ty, Mh. ML
and M} . That enables one to solve the problem of equilibrium for the components
of the elastic force and the moment, without introducing the formulas connecting
the latter with the displacement, provided that the boundary conditions are given
independent of the displacement components.

If Xj=X;=0, the composite form of equatiins is very convenient, In order
to derive these equations we have to satisfy apprieximately the static equations (15.8)
by introducing a force function ¢ according to

ATh=@ AN+ A/ A, 12,
At Th = — $.a 4 Araba/As -+ Araba/A,

(15.11)

and taking into account the relations (2.27) between the parameters of the shell A,
and kiJ and the definitions (2.19) and (2.24).

In fact, after introducing (15.11), the left-hand sides of the equations (15.8)
become

T
RiRy A Pl
while the terms which cancel each other contain the derivatives of ¥ up to the third
order included, without containing the factor AIAZ/RIRZ' For the equilibrium of
the shallow part of the shell, while choosing the cimensionless coordinates a; by
(14.2), this factor will be small in comparison wih unity owing to (15.3). Therefore,
we may consider the equations (15.8) as satisfied, although

Y~

It should be noted that this approximate thec ry may also be applied to a non-
shallow shell, when considering the kind of deformation for which the shell devides
into a large number of shallow portions (for examn»le, at buckling when a large number
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of half-waves are formed on the surface of the shell). In the latter case, A,~R -1,
but the force function sharply increases with differentiation so that the second order
derivative with respect to «a, is large in comparison to the function itself.

Thus, considering that the equations (15.8) are approximately satisfied, we
introduce (15.11) in (15.9). We shall assume that the moment of the external
surface forces may be neglected:

L7 =0. (15.12)
Taking into account (15.10) we obtain from (7.5) and (9.5)
ANS =D+ )y i=1.2 (15.13)
But according to (15.7)

%1y 4 2z = — Aw,

where A is the Laplace operator in orthogonal ciirvilinear coordinates:

A,,,s_‘v[ %f”-‘)_,'*(%;w-’).z]' (15.14)

Ay
Therefore, equation (15.9) becomes:
DA L TH (b + #10) + 2T T (B2 + x12) + T8 (kaz + xa2) — X3=0- (15.15)

Here T’*ij and %y may be expressed in terms of the force function ¥ and the deflec-
tion function w according to (15.7} and (15.11). Thus, (15.15) represents a non-
linear differential equation in w and ¥. Another relation between these quantities
is given by Gauss' equation (3.32) for the surface ¢*, which may also be written in
compact form.

We shall not deal in detail with the transormfation of this equation. We shall
only point out that in order that this equation should be more readily satisfied, one
has to use the equations {15.8) and (2.27). Besides, according to (15.11) and (15.14),

4 Th=2Ay, Th==Et (r11 F veaz) /(1 — ¥), oo
Thus, (3.32) becomes
Ay — Et (K32 — %11%22 — X11k22 — Xz2R11 4 2x12k12) = 0. (15.16)

On using the expressions (15.6), (15.7), and (15.11), the equations (15.15) and (15.16)
form the required system of non-linear equations in ¢ and w.

Let us consider briefly the boundary conditions,

A. Let the end contour be free. Then, only the static boundary conditions
need be satisfied at the contour. Usually it is more convenient to reduce the forces
and moments to the principal directions of the deformed shell, We shall assume, as
in Section 8, that the normal fi* to the end section lies in the plane tangent to the
middle surface o* of the deformed shell. We shall also assume that the external
forces acting on this section are reduced to the normal force ®%, the tangential
force %, the shearing force (Dg, and the bending moment G*.
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Taking into account that for small deforma ions
et ey, y*e=, ds* == ds,

we may write, according to (8.5)

CHT __OHT dn | OHT dn 0kt m | OH* n,
s day ds ' 0s, ds  da. A, T ey A"

Therefore, using (8.11) and (8.12) and neglecting tk,, in comparison with unity, the
boundary conditions (8.21) may be expressed in the simplified form

d),',zT;, ni+2ﬁ2ﬂlﬂz+r2; I‘l‘l.’. (1517)
o, =(Tz; — TxT) nin: 4+ Tiinl — l‘lg);

W3 == Ny b N o (M) — M) mans — Ml — md)] /AL —
—m (Ml — Ma)mm — M (n} — a3)] A5 (15.18)

Gr = My 0t 4 2Mniny + My ) = G,
ni=sine, ny= —cose, (15.19)

where ¢ is the angle between the positive directicn of the ¢, axis and the positive
direction T of the tangent to the contour before deformation, and the trihedron
of the axes {n, %, m} before deformation is right-1anded.

If the end contour coincides with one of the coordinate lines, the conditions
(15.17)-{15.19) will be considerably simplified, For instance, if it ig the line
a,= const then ¢ = x/2.

B. If any geometrical constraints are put on the end contour, the external
load on the contour will be usually composed of th= forces and moments o, ¢F, OF
and Q" along the principal directions of the surfac: ¢. In this case the conditions
(8.35) must be satisfied at the contour. But for medium bending

e, <K, Ei=— oy, Ez= ~ w0y, Ey=:1, N‘.o‘< T;;

therefore it follows from (8.30) that

Th=Ty, Mi=M,,
. . . . " . - (15.20)
Ni'= Ny + Thney + Twa, Ni = N3 + Thos+ Tapo,.
Consequently, in this case, the boundary conditiors are given by the equations
(15.17)-(15.19) after replacing the quantities ..., T/, My, N by o', ... T, M
and M. It is not difficult to see from (15.20) that only condition (15,18) is conside-
ably different.

Before closing this section, let us add a few notes on the stages of development
of tae theory of shallow shells. As far as we knov L. Donnell the first to show that
it is possible to simplify the equations of equilibriim for the membranes forces
by neglecting the shearing forces and bringing the: e equations to the form (15.8).

He made this remark in his paper /IV. 6/ in connection with the problem of stability
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of a cylindrical shell. He also proved that it is possible, in that case, to use the
simplified expressions (15.7) for the parameters of change of the curvature and the
torsion. We have developed this theory in /0.13/ for any shells which were divided
during buckling into a large number of shallow portions; we have solved the relevant
problems, mainly in the components of displacements, and only for cylindrical and
conical shells, We have introduced the stress function according to equations like
(15.11) where the equations (15.8) for X* =X4% =0 have been exactly satisfied.

In the same work we have determined the degree of accuracy of the approximate
theory. Already in the works of I. G. Bubnov /0.2/ and /0.3/, a slightly curved

bar or plate were considered as plates having an initial deviation from a plane sur-
face. The non-linear theory of shallow shells has been expounded in this formula-
tion by K. Marguerre in his work /VL 11/. In the monograph by Wei-Tsang Chien
/0.19/ a shell is called shallow when the ratio between the width of the portion of the
shell under consideration and the minimal radius of curvature is small, i.-e., when
L R<< 1. By this assumption, he introduced the stress function and other simplifi-
cations in the theory of shallow shells. At the same time V. Z. Vlasov created the
general framework of the theory of shallow shells in terms of lines of curvature
JIV. 2/ as above, which is equivalent to neglecting L?/R? in comparison with unity.
Later, in his work /0.4/, the same author gave more valid reasons for neglecting
this, for the shallow part of a shell for which the intrinsic geometry is approximately
Euclidean. The papers by Yu. N, Rabotnov /IV.3/, N.A, Alumyae /IV. 1/, etc,
have also undoubtedly contributed to the theory of shallow shells.

It may be seen from the above that the theory of shallow shells has been

developed by the efforts of a number of scientists (as V.V, Novozhilov has rightly
pointed out in his monograph /0.15/).
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§ 16. Large Bending of a Shell*

We shall say that the bending of a shell is large when the deflection of the
points of the shell is large in comparison with its thickness and comparable with its
characteristic linear dimension, In this case the rotation of the linear elements
will also be large. Thus

W~ ey, op~1, (16.1)
Besides, the condition
%tng-,, (16.2)

must be fulfilled in order to avoid plastic deformations. Hence, it results that the
functions that characterize the deformations should vary smoothly;

Wi~ W, Lymme~ty, Uz~ ((=1,2). (16.3)
Therefore,
My~ Dx~Efx~ ANI < Efs,. (16.4)
A, Composite deformation of the shell. Le:
L~R, a~u,, (16.5)
this means that bending occurs with considerable membrane elongations.

Then,

Ti*j ~ Ete ~ Etsp,

and we may neglect in (7.4) the terms which contain N*. We thus obtain the equa-
tions

{A:TH ).1+(Alrfl ).x+ 7T2A1.2—T'}2A:,1+:‘|A2X1‘=0 l_,-‘2,\ (16.86)

Thkh+ ThA+ 2Thalh - X5 =0, (16.7)

which may be called equations of equilibrium for a membrane, They differ from the
equations of the usual membrane theory (zero moments) by the fact that all quantities
refer to the deformed state. In particular, in this case k5= ky+ %y. The forces are
also non-linear in the displacements. Thus, (16.6 and (16.7) form a system of
three non-linear equations in u; and w. When the ceformations are not expressed in
terms of the displacements it will be necessary to idd to the equations (16.6) and
(16.7) the condition of compatibility of deformations. This condition may be ex-
pressed in the case considered by equations (15.10. and (3.32). Neglecting € in
comparison with unity, and taking into account that e; ~ ¢, the latter equation
becomes

Ky~ X11kas — Xyokas — Spakig - 2 g3kyp == 0. (16.8)

*  The material of this paragraph has been treated, in general coordinates, in
the paper by Mushtari /IV.4/.

86



Let us furthermore consider the deformation near the fixed edge a,=cf = const

which has no part in common with the asymptotic line of the surface g¢. Here the
deflections cannot be considered as large in comparison with the thickness. If the
damping is rapid enough, then in the zone of the edge effect

w<t
Therefore, assuming

="+ o, (16.9)

where wM is the membrane deflection and wK is the deflection due to the edge effect,
near to the edge we have

wh ~wt, W DR, xo = =g,

A AN = (ME )= D (Anl),; Ty=T"+ T§"

By subtracting from (16.6) the corresponding equations for a membrane we obtain
equations of the same kind for T** (without the terms that contain X%). Similarly,
by subtracting from (7.5) the equation (16.7) for a membrane, we obtain the equation

[42 (Ams) L - AA [ TIE xS+ T s+ 2T 8 e+

+ m(ku 4 x8) + T3 (ke 4 ) + 271 (k)] =0, (16.10)
Gauss' condition of compatibility is applied in its complete form (3.32).
B. Deformations with prevailing bending. Let
trrve, e~e;<el, LR, wxi~x (16.11)
In this case the external forces must be small:
Xt~ Xt —~£6), Xs* ~ ;. (16.12)

The bending must satisfy the equations of compatibility (15.10) and (16,8), If, in
addition to bending moments the membrane forces are also given at the edge section,
the problem reduces to the determination of the integrals in the system of equations
(15.10), (16.8), and (7.4). If the membrane forces at the edge are not known, it
will be necessary to solve first the system of equations (15.10) and (16.8) for the
given moments at the contour, and afterwards to determine the forces, by integrat-
ing the linear system of equations (7.4).

In the case of developable surfaces the Gaussian curvature 1/R;R; is zero
and the equations (15.10) will be satisfied by substituting (15.7) and (15.6). If we
take the straight-line generators and their orthogonal trajectories instead of the
coordinate lines «, and a, it will be necessary to set k,;= k;;= 0 and A; = 1 in

1
(16.8). We thus obtain the equation for determining w:

WU — Wiz — Aknwn+ AsAnwawn + (16.13)
- 210,12,2A2.1/As — (A110,2/A2)? — Az, @.2/A2 = 0.

As is known from the theory of partial differential equations of second order, both
families of the characteristics coincide and may be expressed by the following
equations*: w
dw — Q,lddx — ‘w,zdﬂz - 0, d‘w,l — Ag.l 77— daz = 0,

4 ! (16.14)

dwy— A_: wada; + (A1 A1) — AssA1W,3 — As¥kya) day = 0.

* See /IV.5/, VollIV,
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In the particular case of a cylindrical shell, on setting a,= xand e, =y, where
x is the coordinate measured along the generatiig line and y is the length of the

orthogonal trajectory, we have A,= 1, kj;= k »;{y), and the equations of the charac-
teristics allow three integrable combinations

% =0, dby=0, di;=0, (16.15)
where
b =w,, limw, — fk,;dy, Oy=1w-- x0 — b, — f kudydy.
Therefore, the complete integral of the system is determined by the equations
bum C, =9, (C), Ere=yp,(C),
where g, and ¢, are arbitrary functions,

We may obtain in this case the general integral of the equation (16,13) by
eliminating C from the equations
0=0,— C=w—C— x¢:(C) — yp: (O)+/(y) =0,
08/0C=—1— x¢:"(C) — y92"(C) = 0,
f(y):-—ffl,;dydy. (16.17)

(16.186)

We shall further assume that the edges of the thin cylindrical plate are free
and subjected to the action of those distributed liending and twisting moments which
cause a change in curvature:

A== - W= — 8 £Q, xp = —Wy=—f,
Ty (16.18)
From (16.16) and (16.13) we obtain, using (16.17):
Wi =91, W,y"—‘?l“‘f.y, '@,xt=9l' = =a,
Wy =9'Cytin=8 wa=9Cstp'Cy=y,
2 e 0 (B — kag) = apy’ Iy s
T = (B — ku)=1a9ps'C,, .C’+ ¢, L.
Therefore,
—dC=(ax+y)dx+ (1 y+yx)dy,
(‘ ) (16.19)

d,] -adx + 1dy, d?‘ = Td L4 + (F -— kn) dy.

From this, we can find the expressions for C, ¢;, and ¢, in terms of gq, §, 1.
At the same time, the integrability condition for (16. 19) must be satisfied

Lk 1’.=_‘_(_".)___ﬂ (16.20)
dy #x' dy dx \: o
For instance, if a=const, y=const, a(f— 4n)= ?, we readily find from (16.19):

C=-2 y—, g=ax 1y, a=Lyti
2 2 a
" axd
w=12 vy - f(9).

(16.21)

If a= 0, this solution will be useless.

C. The edge effect at free edges for larg: displacements. In order to illus-
trate such a problem, let us consider the deterriination of forces and moments which
have to be applied to the straight edges of a thin, circular, cylindrical plate to
maintain its cylindrical form (or any other forn. very near to that) after a large
bending.
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Using the same notations as in B, we may in this case write A = A2 =1,
k,,= 1/R, k¥, = 1/R*. The equations (15.10) and (16.8) will be satisfied if

=0, xp==xy(x),

x2 = [/R* — 1/R ===}, = const. (16.22)
The equation (16.6) will be satifeid if
Tie=0, Th..=0, Tm,=0, (16.23)
because X* = 0,
The boundary conditions
Th=0, My=D(u+w), N*=Dnxy,=0. (16.24)
will be satisfied for x = +1/2,
It follows from (16.23) and from the first of (16.24) that
Th=0, siee—van, TomElon, (18.25)
The last of equations (7.5) and Gauss' equation (3.32) become:
Dy, ex+ Ethpun =0, 3, 0 — hpixys = 0, (16.26)
or
11, cxex Ay =0, dwm (V3T — )/tRO)S, (16.27)

The solution must be an even function of x. Therefore,

213 3= C; ch Ax cos Ax 4 Cysh Ax sin Ax.
Assuming

chp=shy, p=2I/2,

we obtain from the second and third conditions of (16,24)

0 COSp —sinp

u 4 sinp
C, o COS Sil
chp

Cy = v
chp

i

With these, the force may be determined from (16,26) and {16,25), and the bending
moment from

My = D (g, + vxu).

A particular case of this problem for R = «x, has been examined by another method,
in the monograph by Love /0.11/.

The classification of problems of the non-linear theory of shells suggested in
this chapter has been given in a more general form in the article by Kh. M. Mushtari
/IV.4/. A somewhat modified classification has been given in the monograph by
Wei-Tsang Chien /0.19/.
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Chapter V
GENERAL THEORY OF STABILITY OF THIN SHELLS
§ 17. Fundamental Equations of the Theory of Stability of Shells

Let the middle surface of the shell before deformation be referred to the ortho-.
gonal coordinates @,, a, z with the unit vectors e, &,, m. We shall consider lwo
successive deformations of the shell. After the first deformation defined by the
displacements o

o' =ule, + ules+ w‘Fn‘, (17.1)

the surface o! becomes the middle surface of the shell. We shall fix the points of
the surface o! by the former coordinates @, a, and z. In spite of the smallness

of the elongations, we shall not neglect them initially in comparison with unity, since
that may sometimes lead to inexact results. We shall neglect only the shear in com-
parison with unity. As shown below, his leads only to an unimportant error, even
when reducing the main terms in the equations ¢f equilibrium. For the present we
shall not put any limitations on the magnitudes «f the displacements. From equations
(3.4), (3.5), (3.16), (3.17), (3.13)-(3.15), (3.29), (9.5}, and (6.13), we shall find

the guantities that characterize the first state o. deformation and siress of the shell;
we shall denote them by superscripts I; the quantities which are not specified here
may be obtained by permutation of the indices 1 and 2.

The following are the most important quantities:
1. the fundamental vectors of the deformed coordinates
mi=a (1 +el) e +eeat o m), (17.2)
m'=Ele, J- Eies+ Esm.
where . . . .
AAse = Azl +u24m I— w ki A Az,
Aw, =) — A (alky - ughia),

AAgely == Asuh, — wAvz + @'ki2A Ay, El = elmy— (1 +eb)wl, (17.3)
El=(1 4 i) (1 + en — eleed;

2, the elongations and shears
di= el (el e ftal?, (17.4)
2}y = el + en + elien + hel, + olol;
3. the changes in curvature

Xy -—— t'lzlku +8;zuu - (E:t {m +E;€:2,l +

+E:Ii“’ll.l+“‘%Al,2/A ): A, (17.5)
2y = — elkn +¢{1k11 — (E{f B + Ezedy, -+

+ Ejeii — ofd /A ) A
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4. the internal forces and moments
r\lx =K('{1+"2!2), T1[2=K(I —v)s:g,
M:l =D(¥;1+V¥;lv)). M:2=D(] 7!)1}2;

5. the external forces and the external moment per unit area of the middle
surface

(17.6)

Y=xet+Xe +Xm', D=Ll —L)el. (17.7)

These have to satisfy equations of equilibrium similar to (7.4) and (7.5):

(AT +(AiT0)2 + ThAi: — Tadn + (17.8)
L AA: (RN BN 4 XY= 0;
(A N) a4+ (AND) 2 — AA (LT 4 260 T+ (17.9)

+ kb Th— X)) =0,
CAML) - (AM) 2 4 MBA L — MbAs, +
+ AiA (Li— N)==0
(it = iy + »iy).

If, for some values of the external contour and surface forces, a second equilibrium
form of the middle surface denoted o¢* becomes pcssible in addition to the form

a!, one says that the shell ig in a state of "neutral equilibrium". The correspond-
ing load is called a critical load, because for an increase, however little it may

be exceeded, the form of equilibrium ¢! will lose its stability.

(17.10)

We shall assume that the additional displacement
v=ue + e + @m,

which turns ¢! into o¢* is infinitesimal. The components of the displacement in
the disturbed gtale o* are

i 1 I
wt = du, =i wt=w' 4w

After substituting these in formulas like (3.5) we find

—

e, =e, +e, e,=¢)+e: wi=ete, 1,2 (17.11)

Where e, and o, are infinitesimals which may be calculated from (3.5), and e! and
»! are quantities of the maximal order of magnitude unity, which may be determined
from (17.3). We denote by e*, and 2 %, the elongations and the shear of the middle
surface o*. They may be calculated from formulas similar to (3.13)-(3.15), using
(3.5), (17.11) and (17.14). In the expressions for the quantities which are of inte-
rest to us we shall retain, for the moment, the infinitesimals of second order,
neglecting only infinitesimals of the third and higher orders.

Thus
e =en +—; (e + et + o), =t e+, E
2, = e}, + &, + ey + Chpentwte" = (17.12)
=2(ef;+ey ),

where we denoted by ¢;;' and ;" the infinitesimals of the first and second orders
respectively., These characterize the additional elongations and shear due to the
displacement v:
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G=(1+el)euteher +olm, o =7 (e bt o),
%‘” = EHZ;] +e"€{2 +(] + e‘l) &y +(} +8§,)8u +‘"l¢'{, <+ “‘1“'1 ’

(17.13)
o i
Yy == €€ + € +om 1,2,

The components of the elastic force along the principal directions of the surface
a* are:
T=K(8) +ve) =T, + Tw+ 7y,
T=K{l—we=T4H+ T+ Ty,
Tu=K(thtmp), Tp=K1 =9, (17.14)

Th=K(shitwa) To=Ki—ve; LT

In the same manner, the total change in curvature on going from the undeformed
middle surface ¢ to the surface o¢* may be det:rmined from (3.29)

W =wl x4+, 4 j=1land2, (17.15)

where the x}j , glven by (17.5), are the changes in curvature due to the passage
from o to ¢ and u'ij are the changes due to the additional displacement.

Linearizing (3.29), we find:

X = — enkin + €k — (€241 3+ Azm 1)/ AiA,,
since in this case

tegkyy == taakiy ~ 8 /R,

and e, k, may be neglected in the expression for xy; as(1f2)tw; ~ ey, H(1/2)tx; <y,
the infaluence of the bending on the equilibrium of the shell is in general insignificant.
Therefore, in all cases:

217 — eqkig — (02413 + Awin)/AiA,, (17.186)

23 — @rakyy — (Awwg — @1z 43} A1 Ay, 72.

It should be noted that since e;;=2s;;— ez, we c.in replace e;, by e,; in the second
formulas after neglecting the shear as before. We thus obtain the expression for
the torsion that is given, for instance, in the mnograph by V. V. Novozhilov 10.15/.

Introducing (17.11) in (3.29) applied to x* and using (3.20), (17.5), (17.11)
and (17.15), we obtain*: !

AIX;, = - E{Eu,x - Eéeu.x - E;',Nl.i - Ex'eiu — E:'G},., -
— Ef'ol, — @A 0/A; + kueaAr — enkidy,
Ax’l;,= - E{t:x,x - E;hz.x - E;’,"’z.l - El’egll'] - Ez'G,',., -
— Ey'o) | + w1A12/As + kizen A1 — enknA,,

- ‘ (17.17)
A}, =_El”e||l.l — £ el{.’,l —1 '”"’{.l —Eiena—

— EY'e1sn — Eg'ory,
Ay = — B¢y, — Ed'egy — ivoy  — Ei'en . —

—E)en— Eyoay,

* Formulaa (17.13) and (17.17) for general coordinates have been given in a some-
what different form in the works /0.7/ and /V. 4/.
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where the Ef are given by

’
E/ =elwm+ €1aw) — & — ¢} o — 6‘:2"{ '

Ey == —elen —eney +en (14 ¢),) +en (1+ej,)

Ey" = 1303 — €330, Ey) = Cuein—eien 1,2,
i

(17.18)

We may find the bending and twisting moments of the internal forces from the well-
known formulas

W=D FeR) =M M M, ... (17.19)

where

My =D (d,+ ), My, =D (x,+ vy),
My =D (), +m3). .. .

As seen from (7.5) and (17.19), the shearing forces are also composed of three
parts

Nt =N+ N+ N/, (17.20)
which may be calculated from the corresponding equations similar to (7.5). If the

external surface density of load does not vary during the deformation (as, for
instance, the shell's own weight),

X*= Xi*e* + X*e* + X" m® = Xie1 + Xatr + Xam, (17.21)

where X,, X,, X, are the projections of the load density on the principal directions
of the shell before deformation. Multiplying this by e* we find

X =Xerei* + Xees e + Xame*, ... .
Whence, using (3.19) and (3,20), we obtain

X=X (1t + en) + Xz (el + e12) + Xa (@} + 1), (17.22)
X = XiEY + XaE* + XGE»*.
Similarly,

Xim Xi(14-e) + Xeel, + X, (17.23)
X\ = XiE 4 KB+ XyE} .

From these we can determine the components of the surface load along the principal-
directions of o* and ol if the components along the principal directions before de-
formation are given. If the vector X changes during the deformation in such a way
that its components along the principal directions of the deformed shell remain
invariant, then

Xr=X=X;, j=1,23
The hydrostatic pressure, for which

Xi=Xi= X, =0 when i=1, 2 Xp*=Xj=Xs=—p, (17.24)

is an example for such a "self-adjusting”" load. Here we assumed p >0 for the
external pressure,

We thus obtain expressions for all the quantities occurring in the equations of
equilibrium (7.4) for the state o*,
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Subtracting from the latter the equations of equilibrium (17.8) and (17.9) for
the state ol, and taking into account (17.14), (17.19), and (17.20) and the equations

Ar=4(0+ )0 +ey). A=A (144)). (17.25)

we obtain the equations of neutral equilibrium, which contain the components of
the additional elastic forcea in the principal directions of o*. Here we have neg-
lected the terms containing infinitesimals of the second order. We shall also
neglect the small quantities of the order of ng ei,- exm. Besides, we have neglected
before the shears in comparison with unity; therefore, we may also neglect, in
the equations of equilibrium, the small terms like T}e,, or 'I"z, el,,, retaining,
however, the terms like T! e, or T}, s,ll.

For example
AT — AT o Aen T + A (L4 ) T,
AT, — ATy = AenTh + 4, (1+ ) Tu=ATy,. *
Thus, we bring the equations of neutral equilibrium to the following simpler form

[AsenTh + Az (1 + &32) Thls + (A1 Ton)s + TioAvy — Th(Asen)s —
— TulAs (1 4 siglt + A1 As [Ny + N (Rey 4 2h) + (17.26)

4 Nixiz + N2 (s +da) + X0* — X1) =0 ‘1___.5
(AN)a 4+ (AINS) . — A4, Iﬂx 14 Tulkn +l:l) +

+2712'1I|2+2T'|z(kn+1||2)"T;z*;z-‘- (17.27)
+ Trlkn + xp) — Xo* + Xi| =0,

where N and N] may be determined from the equations (7.5) after replacing the

x*; by »'y.
Let us, further, derive the energy criterion for stability of the shell.
Let (DH, (I)H, (D[; be the projections of the e::iternal contour force on the axes e,

e, m,and G the bending moment of the external contour forces. From the formulas
(82:30) for the first state of equilibrium we find th2 projections of the internal elastic
force on the undeformed axes which we shall mar k by the superscripts H:

=T+ )+ Theh +MEL Ti=T) e+ T, (1+ L)+ ME,

Nr= e+ Thebs BN 03 17.28)

According to (8.32), for this state we have the following static boundar); conditions:

i —
= Tin, 4 i, - £] id' Soa

—

1
@ = N*n, 4 Nifn, -~E§"o_”._ (17.29)

s
= Min? +2My mn, + Ml 12 =G,
where, from (8.12) for nl=s;

H = (Ml — M) mn. — My (7 —nd), (17.30)
and from (8,7)
O _OH o | oM de om o | m OH (17.31)
a8 o, ds de, ds A o, A, Oa
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* Analogously, neglecting the squares of the infinitesimal quantities, we find for the

* )
state o Tu=th(+ )+ Tha + ME=T, 0 +ei+a)+ 1 (1 + )+

+ Thy (el + @)+ Tiaeh + M £+ &)+ N\ E],
Th= T (eatam)+ T, e+ T{z(l +ey+m) + T (1 + ) +
+N(B+E)+ M E, M=T,(el+a)+ The+
+ Th (el +wm) + Ty eh+ EJ (N + M) + EsV.

(17.32)

Since the external contour load remains invariant with loss of stability, we
have the following static boundary conditions which are similar to (17.29)

ot=Tin+ m— (£46) 2L 2L iE
pat
i
SY= N+ Mm— (5 + E-’)%':— - E‘s%- (17.33)

S=(My+ My )ad+2( My + My) nny + ( My + Mp) &3
H = (M'“ - M',z) any — M.l:l("l. - a'l)|
Hl
%r = "xH’| /A +"|H‘_1/‘1. *
Subtracting (17. 29) from (17, 33) we find the static boundary conditions for the
additional forces and moments

(T e+ T (1 + eh) 4+ Theu + Tueh + ME + NEllm +
+ [T;aen + Tn 341 + Thes + Ta (fh + D4
+ ME +NSEY ny — Ev 0HYos — EHP/as=0 12 (17.34)

(They + Tis o} + Thes + Tie o+ E3Ny + Es M) na +
- (Thws + Ti 0} + They+ To of + E3 Ny + Es M) na -
— E;3HYos - ESOH'[os = O;
VGH'/0s - ESOH'/s = 0 (17.35)

Mim? + 2Mig nins -+ Myna? = 0. (17.36)

Besides these conditions, on those parts of the edge contour where the dis-
placements are given, the corresponding geometrical boundary conditions must be
satisfied.

Thus, after replacing the forces and deformations by their expressions in
terms of u,, u,, w, from (17,26) and (17.27), we obtain a system of three homo-
geneous linear equations with respect to these quantities for the homogeneous
boundary conditions (17.34), (17.35), and (17.36). Evidently, the solution of this
boundary problem will be different from zero only for certain combinations of T!
and M! which characterize the critical load. Y

ij

Since in both the equations of neutral equilibrium and the boundary conditions
most of the coefficients are mainly variable, an exact solution for this boundary
problem may be obtained only in the simplest cases. Therefore, 1t is often neces-
sary to resort to approximate methods; among these, the energy criterion for
stability, based on the principle of virtual displacements, is the most widely used.

In § 10 we deduced the equilibrium condition (10.14) where 8A is the elemen-
tary work of the external load in the possible displacements from the state of equi-
librium determined by (10.13), and 8W is the variation of the specific work of
deformation, given by (10.11).

Let us at first apply (10.14) to the first state of equilibrium, The gpecific work
of deformation corresponding to this state is:
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Wt 1 K s = 201 — ) (b o — el

(17.37)
+ Dl 42 — 2(1 — ) (x g — ,:;)]} .
Therefore,
AW = K[(eh + cin) (Bali 4 Beda) — (1 — v) (ehiBeye +
+ el — 2elabila)] + DJ(h + 1L (B, + dedy) - (17.38)

— (1 — v (xlibxhs + xiedxchy — 2ufybudy)),

where, according to (17.4)
8oy = (1 + ely) by + ehadely + oltal,
2a1s = (1 + ) 8ele 4-(1 + ) behy + eldehr +
+ entely + obef 4 aldol -

As has been pointed out in § 10, the last term in the right-hand side of
(19.13) is zero.

An elementary virtual displacement from the state ol is given by
' = e8ul + exbul + ribw'. (17.39)

We assume that the external surface force X density may be resolved into the com-
ponents X, and -)?2. The first component is independent of the deformation (for
instance, the shell's own weight) and the second varies in such a manner that itg
projections on the principal directions of the deformed shell remain constant (for
instance, a hydrostatic pressure). Consequently, the external surface force for
the state a! equals

X' =%+ X3 = Xuiés -+ Xuse: + Xum + (17.40)
Xuel + Xnep+ Xnt',
where Xi,.., Xu are quantities which do not depend on the deformation. Using

(3.19) and (3.20) for & and m', and multiplying (:7.39) by (17.40) we find the
elementary work of this force in the virtual displaicement

X' 89" = (Xps + Xu (1 + eh) + Xeehs + XoaEl) b0l 4

+ 1 Xu + Xnelz+ Xa (14 eh) + XaaE3) 8ui +
+ (X1 +Xn°{ + Xn"’i""‘ X”Ebhl.

(17.41)

The equivalent moment of the external surface forces with respect to a point of
the middle surface is ugually small, and we shall therefore neglect it. Let the
external load for the state ¢!, equal P!, be expressed according to (17.40) in
terms of the quantities (Di_ which do not depend o1 the deformation. We shall con-
sider that the external benjding moment G is independent of the variations of the
deformation. Then ¥'#2' may be determined fror: formulas like (17.41)

M, El+ e1E} + mES, tm' sme8E. 4 £20E} -+ m8EL,

(17.42)
n' = il 4 0 e n €1+ s
Using (3.20) once more, we find:
r'8m' = [n1 (1 + eh) + naeu) BEF +
(17.43)

+lmein+ ma (1 + en)| 8B+ (e, + nawi) 865 ;
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Yo} + wjdel; — (1 4 ek 3u] — wiBen 1,2,
(17.44)
SE =(14el)oen+(1 + eh) dehy — eldel —enbelz.

We have thus obtained the necessary expressions for all the quantities occurring
in the variational equation of equilibrium (10.14) for the state o'

j' X 40'ds + [(6’ 5 + Gnlem)ds =
(] 4

(17.45)
=ﬁ AW A, Asdadas .

@

By successively transforming this equation (as shown in § 10) and equating to
zero the coefficients of the virtual displacements, we obtain the equations of equi-
librium and the static boundary conditions. We shall now write down the same equa-
tion for the equilibrium state ¢*. For this purpose we replace everywhere, in
the previous formulas, ul, 1.1[2 and w! byu!l +u,, u} +u, and w! + w, retaining
the squares of the additional displacements. Since e".l‘j and w* are linear functions
of ul +u, and wl+ w, we put:

e, =el+tej; o == al 4w
Introducing these and (17,12)-(17.18) into (10.11), we find

W= W W W, (17.46)
where
W = K(eh + k) (s 4 g2} — (1 ) (sh o2+ thawna —
— 2ch ]+ D f(xh + ) (0 + %) —

— (1 =) (hyxan - wda X — Xzl
W7 = K[ (e b - (eh o o) (sl - o) — (17.47)
— (L= b ent ehaohi - oo — oz — 2ehe) |+
D[ 3 (s P o (s ) sk ) —

(1 = ¥) (b X A mha i X X i2— 2xla xaa) ] .

When performing an infinitesimal virtual displacement of the state o*

3v = e,8u, +- exbuy + mbw,

we have to vary only the additional displacement. Here W' = 0, and 3W may be
determined from (17.37) and (17.38) after replacing be:j and 8«»§ by §e;, and S,
respectively.

The surface force for the state o* isg

X =X +:\’z'=XuEl+XuEz+an—n+

- - - 17.48
4 Xpes* + Xne* + Xaam*, ( )
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Consequently, using (3.19) and (3.20) we obtain the expression for the elementary
work of the surface load in the virtual displacement §v:

X0 = [ X1+ Xu (14-eh + en) - X2 (e +en) +
+ Xn (E|[+Ex')]5u1 + [ X124 a (C}z +eu)+ (17.49)
+ X (1 +en+ 222)+ X (B} - E))bus +
F X+ Ko (wi A w1) + Xz (0h + a3) 4 Xig (B} + E5)] S00.

The external contour force for the state o* is
T* = Qs + Cpa; - Gram + Oyie,” - bages* + By, (17.50)

and the elementary work of this force may be determined from formulas similar
to (17.49),

We obtain further

A*bm* ={ny (1l + el + €n) + na (eh + en)] 3(E," +E17) + (17.51)
+[ra (et ) + na (1 + e+ )] 2 (B + £7) +

(s (@ @p) - 1 (0] + 02| 8 (Es - £,7),
where

3E) = elhw; + wite;, — Suy — € by - wlben;
i

AE)" = 128wy -+ wider; — ege, -wdey, 1,2 (17.52)

s
BEY = — ez den — ehdens + (1 + eh) Jen + (14 e}y) dea;
3E;" = ey1dex; + ex8er; — €i28eg — €188, .

If the shell is also in equilibrium in the state o*, then in addition to (17.45)
it is necessary to satisfy the variational equation

jj;\_"éadaﬁ- ((5*654-5;* m*)ds - (17.53)
) ¢ ’
—8 j.J.AlA: (W' 4+ W™y dayda = 0.

©

As may be seen from formulas (17.47)-(17.£2), both sides of this equation
contain quantities of the first and second order of smallness with respect to the
infinitesimal displacements u, and w and their variations. It may easily be seen
that the quantities of the first order of smallness :ontain infinitesimal factors only
in the form of the variations du; and 8w, the ccefffients of these variations being
equal to the corresponding coefficients of 8ui‘ ani 3w! in equation (17.45). Whence,
remembering that we are considering arbitrary v:riations of additional displacement
which occur without disturbing the geometrical re ations, and that the state o! is a
state of equilibrium, we conclude that the sum of he first order terms in the left-
hand side of (17.53) is zero. Consequently, if we neglected the quantities of the
second order of smallness we should obtain, according to (17.45) and (17.53), the
same equations of equilibrium and static boundary conditions which characterize
the state of equilibrium ¢! but do not enable us to zstimate the stability of this
state. Equating to zero the remaining terms in ths left-hand side of equation
(17.53), i.e., the sum of terms of the second order of smallness, we obtain the
equatien:



SS[(X:ICH + Xuzen -+ XuafY') 5"|>+ (Xnei2 4 Xee3:+ XaaEx') dus+
)

+ (Xnoi4 Xagwa+XnEv') Sw] d2 §[(¢2lell+¢7zezz +0osE1') b4
&
+ (Puier: + Przeze -+ DnEr' ) 8z + (Paiwr + ooy + Poaky’) e ds +
+ Sa {('lleu'i— n2€21) 8E - (18114 n2€22) 8E 4 (1w n205) 8Ey - (17.54)
¢

+lm (1 + e:l) +ﬂ2¢'5|]5£1' -+ [nle}’.’ “+n,(1+ e:'n)] 3E,"

+ [’“"’{ + nz‘”‘;l 3E," } ds — 55§W”A1Azdﬂldlz =0.
()

This equation gives the energy criterion for the determination of the limit of sta-
bility of the equilibrium of the shell*.

Thus, when the critical load is reached, the variational equations (17.45) and
(17.54) must be satisfied simultaneously. For solving them approximately by the
Ritz-Timoshenko method, we shall take at first the analytic expressions of the
projections of displacements in the state ol

4 = Clitl 4 Chatha + .., ©'= Cowl + Comz+ ..., (17.55)

where each of the functions ug_ and w! satisfies the geometrical boundary conditions,
and C}j are the amplitudes of displacement which we wish to determine. Besides,

we shall assume that these functions are dependent on some parameters, m, n, p,...
which have also to be determined. Substituting (17.55) in (17.45), using the expres-

sions for virtual displacements

5 C u!
dul = %
“ —2 (u:,BC{,-i- Cle 5, ®m+-. ) e (17.56)
Ro]
and equating to zero the coefficients of the variations 8C{ , &m,..., we obtain an
infinite system of equations for C]ik , m,..., corresponding to the state of equilib-

rium of the shell.

Proceeding analogously for the determination of the additional displacements,
we obtain from the variational equation (17.54) a system of equations for the para-
meters C,,, m, n,..., which characterize the displacement at the beginning of the
loss of stability of the state of equilibrium ol. The condition of compatibility of
these equations gives the required relations between the critical magnitudes of the
load parameters. In concluding this section, it should be noted that the fundamental
equations of the theory of stability of shells derived here are highly complicated.
This is because we tried not to restrict, for the present, the range of application
by retaining the generality of the deductions. In particular, we did not make any
assumption on the nature of the deformed state and the state of stress of the shell
before the loss of stability, assuming that the state o! is necessarily a membrane
state which results from the initial state ¢ by large bending.

* The energy criterion for the stability of equilibrium of an elastic body has been
formulated by E. Trefftz in his works Jv.16/ and /V.13/, assuming that the
external forces are independent of the deformation. This criterion was devel-
oped for shells in the monograph /0.13/.

The generalization of this criterion for the case where the external forces depend
on the deformation has been given in 10.14/ {see also /V.14/).
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§ 18. The Stability of a Non-Shallow Shell under Small Bending

Let us assume that the contour forces and ‘he surface forces acting on a
shell in the state o¢!do not bend it, or bend it very slightly, Then

% oy << ey, o<1, el<<A, (18.1)

and the first state of the shell is a membrane state. This state may be determined
from the linear theory of shells in membrane state

N —
cy=el; 2, =el, el L2 (18.2)
(AaTU) 4 (AlT2)a + ThAl,— Th AL+ AlAdx! =0 1.2, (18.3)
—
AT+ kTl 4 kTl - X} =0, (18.4)

where el; and T are given by (17.3) and (17.6). The additional deformation of the
shell with buckling is characterized by additional elongations and shears e}, and
by additional changes in curvature xj;, whose expresaions (17,13) and (17.17)
become less simple.

Since, in this case, according to (17.3) and (17.18)

Elm —ol, |E| <€), Ebewl 4 th+ b,

o 1
£ = —w;, By wy=:0,

neglecting (as in calculating the change in curvature), the elongations and shears
in comparison with unity, and using (18. 1) and (1¢, 2), we find

4
&' =y, tgswrg, e =en+ el e+ ol w;, (18.5)

where x; and x,; are given from (17.16). The approximate value of £, may be
calculated, as in the general case, from (17.13).

The equations of neutral equilibrium (17.26) and (17.27) can also be simplified
because there it is possible to neglect the terms containing x|, and NiI and to put
N{ =N, , where N; are shearing forces expressed in terms ofl xjj by the linear
formulas (7.5), Besides, in the following we shall assume that the
hydrostatic pressure (17.24) is the onl y surface load. Therefore,
with small bending the equations of neutral equilib-~ium become

{AzesaTli + As(1 +-a) Tuds + (A Ta)a+ T2 Ava — Tia(Asem)y —

~ Tia[As (1 + elalli + AcAs (Mekus + Noia) =0; (18.6)

[AseuTd + As (1 + o) Tado+ (As Ti)s + ThAss — ThiAsen) (18.7)
= Tu{Ai (1 + a2+ AjA2(Nikiz + N k) = 0;

(AsN1)s + (AiND)a — Aila(Thi x4 2T hxia 4 Thy e 4 (18.8)

+ Tiiku + 2T bz + Toa bag) =0

With the loss of stability of the membrane state of equilibrium, a transition occurs
to a state of equilibrium for which the bending stresses begin to play a considerable
role. Therefore, the additional bending elongatiors cannot be small in comparison
with the additional membrane elongations. On tiis basis we assume that
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tr~os, (18.9)
where x and € are the maxima of * and <, respectively.
Let Al~Ar~L, #R~e L, (18.10)

(where L is the characteristic linear dimension of the middle surface of the shell),
In this section we shall assume that L ~R (R being the smallest of the R, ), (18.11),
i. e., we consider the stability of the entire shell or of a major part of it.

Evidently, owing to the smallness of the bending in the state ¢! the quantities
characterizing this state vary smoothly or in particular are constant:

k<, TinsT)  4im=12 (18.11)

Let the quantities characterizing the additional deformation be varying upon differen-
tiation with respect to the dimensionless coordinate a, 8o that

ey e, tam sty e <1 (18.12)
where A; and A, are real numbers.
Let us consider the various possibilities.
A, Let
MD>0, M0 {18.13)

In other words, we assume that the parameters of the additional deformation increase
considerably upon differentiation with respect to at least one of the coordinates.

For a non-shallow shell such a deformation is possible when the surface o* divides
into a large number of nwaves! each of which may be congidered as a shallow shell.
Therefore, the additional deflection w is large in comparison with the components

of the tangential displacement, and the rotations o, are large in comparison with

the elongations and the rotations e, and e,,.

Thig important case of loss of stability will be examined in detail in the fol-
lowing chapters, It should only be noted here that in this case not only the shear
may be neglected in comparison with unity—as we did in setting up the general
theory—but also the elongations. Thus, after making all the simplifications which
can be used for shallow shells, as we did in § 15, we obtain the equations of neutral
equilibrium*:

—

(AT + (ATa) 2+ T2z — TynAg=0 1,2 (18.14)
D Abw 4 Thimsy + 2Thamia+ Taza+ Tnku + (18.15)

+2Tukn+ Tukn=0,

Tu==K(en+vea), Tia=K( —v)eiz, gn =L,
263 =éu+€n, (18.16)

where

and x,; are given by (15.7).

* See monograph /0,13/ and the articles /V.4/ and /V.1/.
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B. Condition (18.9) may also be satisfiec for the case when

x1<0, h-O, 18 7
{or =10, 1, <0), 18.17)

i.e., when the parameters of the additional deformation decrease considerably
upon differentiation with respect to a.

As a concrete example, let us consider the stability of a shell of revolution
referred to the lines of curvature and let the lines ag = congt be the meridians,
Here AI, 2= 0.

The equations (18,6) and (18.7) may be replaced, in the first approximation,
by the equations (18.14), from which we obtain ar estimate of the order of magni-
tude of Tij:

T~ Taa~Tu Tyy~Tgg~Ta

or

Ta~ Tne™, Tpm= Ty ~T, M Tp~ Tusy™. (18,138)
Let us assume, for instance, i —_ ;’ . Then

Ta~Tyty Tu< Ty

Therefore, from (18.16), in the first approximatin

=~ vV, Ty~ Etey, Ty~ Eh,,z;“—s— Eleg.
Consequently,

St cam eV (where \,_—_-;—). (18.19)

Here *,, is the largsst of the %y In order that conditions (18, 9) should be satis-
fied,

tig~tp e~ (18.20)
must hold, where
(AN, <A M)y . (A, Nydg ~ Drigy ~ Ef¥apy ~ Ethey, (18.21)
Let us consider two further possibilities:

1. Letk ,=0, k, = k12~1/R. Then (18.19), (18.20), and the condition of
compatibility (3.32) will not be simultaneously satisfied, In fact, the left-hand
side of this equation is the largest quantity (of an crder of magnitude r ) while
its right-hand side equals 2

~A Ay xga Ry~ R tgg ~ Eryg R L.
In other words, it contradicts (18.20).

2, Letk,=k,;; =0, kp~1/R, i.e., ois a developable surface. Then con-
dition (3.32) is satisfied, but the first of Codazzi's equations (3.35) can hold only
for Ay = const,
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* Thus, the case considered may occur only for the loss of stability of a cylin-
drical shell, for which

AT gy by ~ REL ey 2,
This is of the same order of magnitude as (18.21), if
YR~ B \=— 12 tR ~ ¢,
Besides, according to (18.8), (18.21), and (18.20)
At Ty %y ~ (ANy) g ~ E0 u,
if with the loss of stability

Etlz;;  Er?
Rixy, Ry

T;z“"
We also find that for the critical load, we must have

£ £t EB 7t \Us
NS~ T~ (F)" (18.22)
On the basis of this analysis, the equations (18.6) and (18.7) may be simplified by
neglecting the underlined terms like 7§, e and Ty *

The validity of the conclusions, which we arrived at for case B by analysis of
the orders of magnitude, will be corroborated in the following section by a more
precise examination of the problem of stability of a very long cylindrical shell, i.e.,
the special case for which, after neglecting the shear in comparison with unity, it
is necessary to retain the squares of the elongations and the shearing forces in the
equations for the tangential components, We therefore consider that the theory of
shells, and especially the theory of stability proposed above on the basis of the
assumption that in the analysis of the state of stress of the shell the shear may be
neglected in comparison with unity is justified.
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§ 19. The Stability of a Long Cylindrical Shell of Circular Cross-Section

Let the position of a point on the middle surface be specified by the axial
coordinate x = Ra, and by the polar angle f= a,. Then the line element on the
surface ¢ is given by

ds? = dx? 4 Rd 6 = Rt (da;® -+ dag?).
Therefore, in this case,
A =A;=R, ku=Fki3=0; 2n=1R. (19.1)

We shall examine the stability of a shell under a normal external pressure p
uniformly distributed over its lateral surface, an axial compressive force T!
and a shearing force S!, being uniformly distributed over its end sections a,= 0
and a,= 1/R, We shall neglect the influence of the nature of securing the edges
because of their remoteness. Evidently, from (17,8) and (17.9)

Tl =const=—T!, Tl 7 =S5 . Th=- pR,
el =u} /R = const, e, =(u;,+w' :R=const,

' =const, 4}, =0, u},:=Re} =0, (19.2)
e'ﬂ===2!1‘=u;“:}?, "’:=w.ll R=(, "’;=",12:R=0

Consequently, according to (17,13) and (18.5)

=20+ eu; = er; 26, =20+ o} €+ ohegy, (19.3)

Resr== 27+ w, e12R = a1 + U1, Reyn =uy,. (19.4)
From (17.16)

apy = - W /R3, xp== (U — W1)/RP, == (g0 — W) RE (18.5)

Taking into account (17.6), (17.14), and (18,16}, v’e introduce (19.3) in the equations
(18.6) and (18.7). We shall neglect the underlinec terms and also all the cubes of
elongations and rotations and the infinitesimals o second order. Thus, from (18,6)
we obtain the approximate equation:

Tun+ Tae — Tlens + K26l g1+ ¢ (enn+venl +
+ 'L(l—?;ﬂ (sen+ ein)a =0.
But
Ken ~ Keyz~ T, Kal) ~ S\ T,

therefore, in neglecting 5‘1 in comparison with mity, it is necessary to retain only
the largest among the smali terms of the equation, namely, the term
KU =9 (diey 4 chen),. In view of our considerations of § 18,

2

ey = 2e13 — €12 = —— €12, Th < Ty, Ta= K(‘II2+V‘;I)= 0,
= —vely, Th=K(h+ven)= K1—¥)a,



we find:

Kl

L —v) 1
st ——'Q-—QH‘FV) ol iz == 72—6’(2_2.

- (ehew +eh ey = —
Consequently, the first equation of equilibrium becomes
Tt Tua+ 5 T ena=0. (19.6)
In the same manner, we obtain the second equation
7‘11.14-722,2—% T e+ N =0, (19.7)
We replace (18,8} by the approximate equation
Nt Naa+R(T xy — 25" xi2 + p Rxgz) — Ta2=0. (19.8)
Introducing (19.4) and (19.5) in (19.6)-(19.8) we obtain a system of three linear dif-
ferential equations for u , u,, and w. We shall assume that the end sections of the
shell are hinged to frames which prevent displacements u, and w in the plane of

the section, but do not hinder the axial displacements u , i.e., we shall satisfy
the boundary conditions:

1*

wr=w=1mw, =0 for a=0, ag=lR (19.9)

These conditions and the equations of neutral equilibrium may be satisfied by assum-
ing, for S! = 0,

uy = A cOS may COs nay, Uy = Bsinma;sin nas,

w = C sin ma,cos Asy, (19.10)

where n is the integral number of waves that are formed on the periphery of the shell,
m=k=R/ (k being an integer)
If St # 0, the equations of equilibrium can be satisfied by assuming:

uy= A sin (ma;+ na,), 43 = B sin (mar+ nag), w = C cos (may+- nay). (19.11)

In this case the boundary conditions are not satisfied, which is not very important
if 1/R is large.

In both cases the introduction of (19.10) or (19.11) in the equations (19.6)-(19.8)
leads to a system of linear homogeneous equations for A, B, and C. The condition
of compatibility gives the required relation between T!, S!, p, m, n, for the deter-
mination of the critical load. A detailed study of this relation may be found,for
example, in /0.13/ and /0.16/. It is shown there that the corresponding value of m
for the minimal load is so small that m2 « n2, if the shell is long. Therefore, to
simplify the calculations, we shall neglect m? in comparison with n? in the second
order terms of the equations (19.6)-(19,8) containing the flexural rigidity D or T!
as factors. We shall assume, in particular, that H

My =D (x4 vxplu=0, Min2=D(l —v)xupe=0,
N1 =0, Ny= MR = DxnafR.

All the same, we should have introduced these simplifications for the determining
equation, which becomes, after these simplifications

Etmt 4 Dn* (n? — YR = T' m¥:nt(n?-{ 1) — 258" mnd(n? — 1)+
+pRat(n? — 1), ) ¢ (19.12)
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In order to calculate the order of magnitude of the quantities £ in the equations
(19.6) and (19.7), retaining the principal terms we find the approximate equations

A(mida) = —Clom  ma),
B(m? 4= — C{(2+V) ritn 4 n3).

where

Rex=try= B mcos(ma, 4 nay) = Bm w/C = — wmyn,

Reuw = uy = A mcos (ma, 4 nag) = A mw/C ~ m*w/n?,

Rezz = uz2 4+ = (8n + C) cos (ma, + naz) ~ m?w/n?, (19.13)
2e:R = w1 + w12 = (An + Bm) w/C == — (2 4 2v) m*m/n>. y

It can be seen from these that the shear is really small in comparison with the
elongations, as we had assumed in the special case considered.

The elongations are also small in comparison with the rotations ey and m;.
However, a systematic neglect of these may lead to a considerable error because
e ={2e12 -en)1 =~ —elar= —dpn—— €12 .

Let us examine a few special cases.

1, Crumpling of a circular cylindrical shell under an external normal
pressure.

Let Tl = 8l = 0.

According to (19,12), m = 0 corresponds to the minimum value of the pressure
p, i.e., in this case the approximate solution co:ncides with the exact solution of
Maurice Levi /V,12/ for a circular ring:

pa=3D/R* n=2. (19.14)

2. Buckling of a shell*, Assuming S! = p = 0in (19.12), we obtain
g

(_ _Bmt | Deen R
T A4 ) Rmi(at 4 1)

If n >1 the minimal axial force will be reached fcr

n=2 md==64/R V31— ). (18.15)
and will be
Tx=02V3 E¢/RVT - T & (19.16)
For very long pipes
ne =1, T'= EmRe) 12, (19.17)

i,e., we obtain Euler's well-known formula for he buckling of a pipe considered
as a beam with hinged ends.

* This problem has been examined by S, P, Timoshenko
(see [V.6] or [0.16]).
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We have generalized this solution for the case of a long shell of an elliptic
cross-section of small eccentricity*, It followed that the critical compressive
force for a shell with an elliptic cross-section of infinitesimal eccentricity is:

rh= (14 5e), (19.18)

where TIK is the critical force for a shell of circular cross section with R = a,

ae =V a*— b (a being the semi-major axis of the ellipse)

3. Twisting**. In this case T! = p= 0. From the condition of minimum
load ¢85! . dm = O we obtain:

mi=n3(n? — 1)H/6RV1 — ¥, n=2,

St L EPRN(L Y (19.19)
3Vz
For a long shell with an elliptic cross-section* * * of small eccentricity
[
Sia=S (145 ¢). (19.20)

where Sll{ is the critical force for R = a.

As may be seen from (19.15) and (19.19),
m, = =R '/ t 19.21
[3 R ( )

The shells which satisfy this condition will be called "long shells".

* Using the solutions obtained for the particular problems we shall convince our-
selves of the correctness of the magnitudes of the critical forces (18.22) calculated
earlier from qualitative considerations of the equations of equilibrium. We shall
also use these solutions for a more complete elucidation of the peculiarity of the
types of loss of stability of shells considered above.

According to (19,13)

£t £t miw Et
Tu= Y (ey +ven) =~ o T~ 3 mhw,
£t Et m'w Et
Ta= T o= @ Taa~ Ti2e~Tna. (19.22)
£t £t mw
7n=_"‘__” (#22+ "n)"—R“' prs ~Tas.

Furthermore, by (19,13), (19.15), and (19,16)

* See /V.3/.

#*% This problem has been examined by Shverin in article /V.8/.

#x% See /V.3/.
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Consequently, all the terms in the equation: (19.6) are quantities of the same
order as Etm3w/R. Similarly, all the terms in -he equation (19.7) are of the order
of Etm*w/R where m~ VIR, In this case it is “herefore not possible to neglect
the "small" quantities. We observe that, in add:tion to these, in the equations
(19, 6)and (19.7) one also often retains terms which are really small*. Such a
term is, for example, Sle , , in equation (19.6) which, compared with the principal
terms of this equation, has a factor of an order of magnitude m? or t/R.

The terms dependent on the normal pressure in (19.6) and (19.7) are still less
important. But they must be retained in (19. 8) because according to (19.5):

Xy ™ m’xg. Ry~ Mxy .

Consequently,

f"‘n ~ SI‘“*‘I’R’: .

It may be seen from this analysis that the "heory of shells, based on
the systematic neglect of the elongation and shears in compa-
rison with unity, may lead to substantial error in the value of
the critical load, only for the loss »f stability of a long
cylindrical shell under axial compression, because in this case the principal
terms in the equations of equilibrium cancel each other, and the approximate zqua-
tions lose their validity**, The validity of applying the equations of the theory of
non-shallow shells to the study of the stability of long cylindrical shells has to be
especially examined if one wants to express the ¢lastic forces and moments in terms
of the deformation by first approximation formulis of the type (17.6), as these
equations are obtained by neglecting the quantities of order t/R in comparison with
unity, On comparing these approximate formula; with the exact expressions (0.19)
for moments and forces, or with the expressions derived on the basis of the Kirchhoff-
Love hypothesis without any simplification (0.15), it may be seen that the expression
for le contains, in addition to the principal tern. we have retained, also terms as
small as mN,, while T j;and T,; contain also terias as small as N,. For the case
under consideration, the principal terms cancel =ach other only in Tzz' Besides,
the small terms in the expressions T, , and T,, , are of the same order as mN .

In T,,,, they are still smaller, being of the order of m?N,.

Therefore, the errors arising from the use of first approximation formulae
for these quantities are smaller than t/R as compared with unity. On the other
hand, the error in T; ; in equation (19.7) is of tte same order as the other terms
in this equation, But this fact does not lead to ar error in the equation for deter-
mining the critical loads, because the same error in the expression T_, also enters
the equation (19.8). In order to avoid these erro:'s, it is possible to eﬁminate
T,,and T ,from the latter equation. In fact, after differentiating equation (19.8)
twice with respect to a_, adding to it the equaticn (19.7) differentiated once with
respect to a,, and afterwards subtracting (19.6) differentiated once with respect
to a;, we obtain, instead of (19.8) the equation:

* Sece, for example, equation (63,1) in /0.13/, >r equations (2.54) in /0,16/,

** We have pointed this out in /V.4/.
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Noamp + Npg + R[” ("u.zz - -:%‘E-
. (19.23)
=28 g+ PR"zn.n]— Ty =0

By substituting here for T 1its approximate expression (19.22), we may only in-
troduce an error which is ﬁ./m2 times the other terms of the equation. Thus, we
obtain an equation for the determination of the critical loads which is accurate as
far as t/R in comparison with unity. *

In the following we shall exainine the stability of shells of medium length for
which m = xR/l is not small in comparison with unity, so that the particular case
considered above does not apply; therefore, equations (19.6) and (19.7) may bz re-
placed by the approximate equations (18.14) which are simpler. Then a large
number of waves are formed by buckling, so that a non-shallow shell is divided
into shallow parts to which the theory of stability of shallow shells may be applied;
it is set forth in detail in what follows.



Chapter VI
THE NON-LINEAR THEORY OF 3SHALLOW SHELLS
§ 20, Shallow Shells with Initial Deformations*

Let A, and k,;, be the corresponding quantities which characterize the middle
surface ¢ of the shell before deformation, referred to orthogonal curvilinear
coordinates a;. It is usually a surface of a regular geometrical form. During the
manufacturing and erecting of the shell, initial deformations occur inevitably, lead-
ing to deviations from the surface o¢. These irregularities of the middle surface
may appear prior to the application of the surface load or contour load, or owing to
a non-uniform temperature distribution in the shell, In this case, initial siresses
may also appear (for example, thermal stresses). Irrespective of their origin,
these deviations from o will be called here initial deformations.

Let us consider that the surface ¢ transforiis into the surface o° under the
initial deformation, We shall denote by u}, u?, ..nd w® the components of the
corresponding displcament, We assume that this displacement is at most of the
same order of magnitude as the thickness of the saell.

We also assume either that the surface ¢ is shallow or that the initial
deviations of ¢ are rapidly varying so that 69 divides into shallow parts.

Thus, the slowly varying irregularities are excluded from our considerations,
as for instance the slight ellipticily of a cylindric:d shell with circular cross-section,
This limitation is not substantial from the point ot view of the applications of the
theory, the more so as it is seen from § 19 that the slowly varying irregularities
have little effect on the state of stress of the shell:. The limitation mentioned is,
however, important for the simplification of the thieory because it enables us to
neglect the effect of the tangential displacements ‘1 on the initial rotations w?
and also the changes of curvature x%: consequently, these quantities and also
the elongations may be determined by the formulas (15.5), (15.6), and (15.7) of the
theory of shallow shells: ’

o= Ar = bgel 2 —eh et ol
(20.1)
Ay = — Az, o4, .

-
AApS, = — A+ FA s, 12,

—

where e? are quantities determined from formula3 similar to (3.5). We note that
initial bénding displacements which cause initial membrane stresses are also
admitted.

Let u{, ulz, wl  be the projections of the disjlacement due to the load on the
principal directions €,, €,, and m of the surface o. Due to this displacement ¢°

* The theory of such shells has been given in a raither different form in /VIL.1/.
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transforms into o¢!. We shall assume that there may be a loss of stability of this

state and a transition to a new state o* with an additional displacement, whose
projections uy, up, w on the same axes are infinitesimals. Then the projections
of the total displacement, the corresponding elongations and the changes in curva-
ture will be:

(—_—) 1 . . -« 1 .2
ul—ul+ul+u"”" E;x"‘e?z_*'“v+'n:eu+—2.w1v

20, =g, 4y H o e =2 (e 2, + &), (20.2)
=y, €y =6 ey +ey, o=t o tw.l, 2
The quantities e{j and ey may be expressed linearly in terms of the corresponding

displacements according to (3.5). The elongations before the loss of stability and
the rotations which depend on the load may be determined by the following formulas:

el 4 Lo 1
=T % +afw,
9l = gl 1 |
2e), = €}, ey T of o) + of o] 4 o] o), (20.3)
, —
°’I=‘wf, Al 1,2.

We also obtain the additional elongations el + el for loss of stability, where

"u =e, + a (‘0? + “’:).
261 =12+ a1 4w (w2 + wf) + o (wf 4 @D

are first order infinitesimals, and

(20.4)

" 1
B =y @,?

) 25;'1=w,mz
are second order infinitesimals. They may be neglected in setting up the equations
of equilibrium, but are to be retained when setting up the energy criterion for

stability.

We shall determine the changes in curvature xi and x.. from linear formulas
. . ) 1 ; i ij
like (20.1) replacing m; by m; and m; respectively.

The membrane forces and bending moments due to the load before the loss of
stability are respectively

Th=K(eh+wk), Tia=K(l —vaiz,

— 5
Ml =D s +vii), Ma=D(1 —vxiz 1,2 (20.5)
bk
The additional forces and moments will be given by similar formulas:
Tu=Klen—+ ve), ... Mu=D( —9xe. (20.6)

It should be noted that when deriving these formulas we neglected the elongations in
comparison with unity and assumed that the shell is shallow before and after the de-
formation, or that it divides during deformation into shallow parts.
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The equations of equilibrium of the interna. forces and moments for the initial
state of deformation will be obtained from equations like (15.8) and (15.9), assuming
that the surface forces equal zero;

(AT0) 4 (AT s + Tha, — ThAw=0 1,2,

Py
(AVy0), + (ANL)s — AlAl[ﬂl £+2 Theh+Th kgzl =0
Ky = kij %5

(20.7)
ANS =D (4 + sp)i=~D(dw), =1, 2. (20.8)
We introduce the force function wo by the formulas
ATh= ¥/ A)a + Audijae 12,
(20.9)

AA T = — ’}“,’u + Az, 4’?2/442 + AlJ+?l/Al .

Then the equations (20.7) will be satisfied in the sssumed approximation and the
function $° must satisfy the equation of compatib:lity

8640 — Et[xfy — x5, (4% + kas) — 30# 11+ 2 k] = 0. (20.10)

If the stresses appearing in the shell during the n.anufacture and assembly are re-
moved by annealing or by other methods, but the .nitial deformation remains, then

Th=0, Nf=0,

and the equations (20.7) are identically satisfied and (20.8)-(20.10) become mean-
ingless. In this case, the irregularities are resid.al and it may be considered that
they appeared after a single normal displacement w, assuming u? = ug =0,

We shall determine the displacements due ti the load by equations similar to
(15.8) and (15.15) for the state of equilibrium o, taking (20.7) into account

(AsTh)a + (A1 Ti)a+ Thaws - Tha,, F AAX =0 i72; (20.11)

Dadw' + Tty + 270 - + Thek o+
+ Th A+ 273 ka4 Th ka — X3 =0,
k=gl 1y, AN = — Daa), (20.12)
where Tij are given by (20.3) and (20.5).

The additional displacements u; and w, whic1 appear with the loss of stability,
will be determined from (15.8) and (15.9) assumin,;

Ty=Th+ T+ Ty, ky=ky+ <+ 4uy. (20.13)
Thus, from equations (20.7)-{20.12) we obtain the :quations of neutral equilibrium

(AsTu)a + (A Ta)a+Tiz Ava - - Tad:, +

+AAMG—Xh=0 1,2 (20.14)
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DAw 4 (T + Th) 2+ 2 (Th+ Th) a2 + (T + Ta) o+
 Tokh+ 2Tk + Thkh — Xa+ X3=0, (20.15)
AN/ = - D(Aw), i=1, 2

If the shell has no saddle points, it is more convenient for applications to o
consider the state of stress o! as the sum of a membrane state and a state of stress
of the same type as the edge effect. We shall denote by WP 4B @B and al &F, @'
the components of the corresponding displacements. Thus,

u=aBaal The=TRaTy, TP k(e 4R (20.16)

We shall determine the elongations corresponding to the membrane state from the
usual linear theory. The elongations due to the edge effect will be given by formulas
like (20.3), replacing u},... by kL

We shall neglect the changes in curvature in the membrane state. Accordingly,
x 1 will be given in terms of w¥ by formulas similar to (20.1). For the membrane
deformation, we have the equations

(A!T:?).l + (A T:?),z + T8A4;, — T?:a/‘z.l"" AdaXt=0 1,2,
B 8 B « (20.17)
Ti88y, 4 2702 ks + il — X3 =0.

Using (20 16) and (20.17) we may derive from (20.11) and (20,12) the equations

(AT + (A T2 + TALz — THAL =0 1,2 (20.18)

DBsw™ 4 Tidal + 27§ xls + Tdrn 4 Ti (< 4 i) +
22T B (0 + xb) + T2 (a4 ) 4

(20.19)
TR R ATE B+ T kn =0

The equation (20.18) 'r'nay be satisfied by introducing the force function ¢/ accord-
ing to formulas like (15.11), i.e., by assuming

Az TIIIK = ( 1‘.‘2‘/:‘\2).2 + Azl 'l“llK/AE >

AlAszlz'=—"l’frz’f'Az,l‘I*.l';/Az+A1:‘3'.11K/Ax 1—.—2. (20.20

From the condition of compatibility, similar to (15. 16), after replacing
Ky, by ky + x?j the equation

A0 — Et { 1 + 2xhs £ — xhi ( k32 4 %) — *n k] = 0. (20.21)

The same equation may also be obtained from (15.16) af*er replacing ¢ by ¢° + o
and »y by x?’ + % §j and subtracting the corresponding equation for the initial state*.

The equations (20,19) and (20.21) form, with (20.20) and (20.1), a system of
two equations for ¢ and @'

If the shell is shallow and X'=X}=0, we may introduce the force function
without resolving the state of stress »! into a membrane part and a part similar
to the edge effect. In this case, we may satisfy the equations (20.11) by introducing
a force function ¢ according to formulas like (20.20). In the equation (20.21) we

* The equations (20.12) and (20.21) for shells without initial irregularities have
been obtained in /VI.12/. See also /V1.13/.
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assume ¢x=4¢! and instead of (20.19) we use the initial equation (20,12). In parti-
cular, with e} =4 =w*=0we may derive from these the equations (15.15) and
(15.16). The equations of neutral equilibrium (29, 14)-(20.15) may also be simplified
if the surface load is self-adjusting, i.e., if the conditions

X=xl, i=1,2 3, (20,22)

are satisfied. In this case the equations (20.14) may be satisfied by expressing the
additional membrane forces T;j in terms of y' by equations similar to (20,20):

AT = (¥ /A7) 1+ Az ' 0/AT,

P - (20.23)
A1dy T = =+ Asr /A A i Ay 1,2

Here the condition of compatibility deriving from (20.21) must be satigfied after
replacing 4ix by ¢*4¢’ and xl by xf, + =« and subtracting (20.21) from the
equation thus obtained. We find

A — Et( 2210kt — x11kiz — xakhy) =0

20.24
ki == ki ) -y ( )

Introducing (20.22), (20.23), and expressions like (20.21) in (20.135) we obtain one
more equation for w,

If the initial stresses corresponding to the initial deformations are zero, it
must be assumed that T?j =0,

Let us formulate the static boundary conditions. Just as at the end of § 15,
we shall consider two possible cases,

A. Let us assume that the edge contdur is free. In the state ¢! the contour
will be under the action of external forces and moments ¢!, ®! @! and 1. At
the contour the elastic forces and the moments must satisfy the conditions obtained
from (15.17)-(15.19), after replacing there the quantities marked by an asterisk by
quantities with the index I.

Let the contour load and the surface load b self-adjusting so that their pro-
Jections on the principal directions of the deform:d shell remain the same after
the loss of stability. Then

Py =p4- By, D' =0, ..., (20.25)
where «. are additional external loads.
Introducing these, and also
To=Ty+ Ty, My=»n}+ M

in equations (15.17)-(15.19) and taking into accourt the static boundary conditions
for the state o!, we find the required boundary conditions for the additional forces
and moments. If the edge contour is given by the line a; = const, the static
boundary conditions assume the form of the corre sponding conditions in the linear
theory

Tri=0, T=0, Ny =0, M=o, (20.26)

It has however, to be remembered that the additicnal forces depend both on the
initial deformation and the initial stresses, accor ling to (20.4) and (20.86).

B. Let us assume that the external contour load is given in terms of forces and



moments along the principal directions of the undeformed shell, which will be marked
with the superscript "H". In other words, we shall assume that there are given the
quantities @, o, & and 5" which remain constant for an additional deformation.
Then we shall also refer the internal forces and moments to the undeformed state,
using formulas similar to (15.20). Thus we have for the state 60

TE=T%, ME=M, N"=N 4+ Thel+The, ... (20.27)

Taking this into account, we find for the state ol

TH=T) My=M), N"=N'+Thol+Thelt

+ T4 (o 4 o)+ T2 4o, (20.28)

The state of equilibrium after buckling will finally be characterized by the relations

(Ti)'=Ty, (M) =My, (M) =M+ Ti(ol+o)+
—_— (20.29)
H(T T e + Ta( el +o)) + (T3 + Ta)e: L2
We introduce in the right-hand side of (15.17)-(15.19) the quantities 7;. M; and (N
instead of T* ...... Equating the expressions obtained to zero, we obtain the
boundary conditions. In the particul ar case when the edge contour coincides with
the section ;= const, the boundary conditions

T\ =0, Ta=0, (M) 4 M1/A;=0, My=0. (20.30)
must be fulfilled.

If there are no initial deformations and we consider the loss of stability of
the membrane state of equilibrium ol the conditions (20.26) and (20,30) will be
identical and will not contain quantities depending on the state ¢ .

If the initial deformations and stresses are the result of a non-uniform tem-
perature t of the shell, the elastic forces and moments for the state > must be
determined from a modified version of Hooke's law, by subtracting the overall
free expansion due to heating from the total deformation of the shell. Let
(&%), (%), 2(eh) be the elongations and shear of the elements of the surface o
parallel to o, resulting from the displacements u, u;, @’ due to the non-uniform-
ity of the temperature field. Let L be the coefficient of linear expansion of the
material of the shell, Then the parts of the elongations which produce thermo-
elastic stresses will be respectively

(=, (B —ie, (F—

The elastic shear is 2(¢,)*. Introducing these in (9.3) in place of €, we find
the components of the thermal stress:

o= G () () — () o= pEs (. (203D

Furthermore, taking into account that

()= + 7y, 2( o) =20+,

and introducing (20.31) in (6.10), we obtain the first approximation formulas for
determining the thermo-elastic forces

P=TH—T~ Th=T4 1,2 (20.32)



and of the thermo-elastic moments
-—

ME=M]-- M Mi=M, 1,2 (20,33)

where
T{=K(h +vep), Tu=K(1—ve:, M{=D (xh+ ).

0 "2
ME=D(1 —v)xd, T'=lif'.dz, M‘==li tzdz.
—

12 -2

(20.34)

For a thin shell it may be assumed that t is a linear function of z. Then if Ty and

LY are the temperatures o. the surfaces z=+1t/2,
2O =ty 1y, 20T =y 1y, (20.35)
we will have
Tv=Et%] —v; M= EfAt6(l — ). (20.386)
From (20.1), (20.35,, and (20.34) we obtain, using (7.5)

NP =N/ - N, AN/ =D (s, 4+))i= - D(dw),; (20.37)
ANT =MLy, iz 1, 2, (20.38)

Introducing these expressions, (20.32) and (20.33} in (20.7) and (20.8) we obtain

(A7), +(A: T:{),: + ThA1L: — Trdz1+ AAs X} = 0 i._2: (20.39)
o
(AN ) o+ (ANS )2 — AAs [ T (k4= + 274 (B2 +2%) +
+ T (ks + ) — Xi] =0, (2040)

Here

MAK = (AT ) 4 Ay T e - ATh 1,2

AA X —— 2 (ﬁ!‘if_) /A:M;) ]+ (20.41)
14v A, 1 \ A 2
+ A AT (Rt ka4 x31~- x30).

If we consider 7/ and M,{ as fictitious forces and moments, expressed in terms of
initial elongations and initial displacements u’ anc w° by the usual fcrmulas
(20.34) then X; will be the projections of the "ther mal load" on a unit area of the
surface of the shell before deformation,

Thus the problem of determination of thermal stresses in a shallow shell
turns into an ordinary problem of the theory of shzllow shells. By solving the lat-
ter we find all quantities characterizing the state o ; afterwards one may use the
above-mentioned relations, without any transform-itions, to determine the states
¢! and o*. This problem has been examined in 120re detail for a number of
particular cases in the works /VI.2-VI.4/.



§ 21. The Principle of Virtual Displacements and
the Energy Criterion of Stability for Shallow Shells

In the previous sections considerable simplifications were obtained in the
equations of equilibrium, the conditions of compatibility, the boundary conditions,
and other relations of the general non-linear theory of shells for the case of shallow
shells. Despite that, their non-linearity in the projections of the displacement
has been preserved, and the analysis of finite bending of shells amounts, in general,
to a boundary value problem for a system of non-linear partial differential equations,
for which exact methods of solution have not yet been found. Therefore, approximate
methods of solution based on the application of the variational equations of the theory
of shells (which have been derived for the general case in § 10-11) are of great
importance. For shallow shells these equations become considerably simpler,

We shall consider at first the equation (17.45) which expresses the principle
of virtual displacements for the state of equilibrium o) before the loss of stability.

Leti the shell be under the action of a surface force
X=X +X:,

where 5(_1 is independent cf the deformation, and ié is a hydrostatic pressure al-
ways directed normal to the deformed middle surface and is numerically equal to
the quantity p which does not vary with changing deformations. Therefore in (17.40),
and also in the other formulas in § 17, one has to assume that

Xn =Xn=0, Xu=—p, (211)
and, for an external pressure, p >0,

Let us assume that the external contour force ' may be also resolved into
the components &, and @', the former being independent of deformations and the
latter varying with the deformation so that its projections on the deformed axes re-
tain their given values.

Thus,
O =Dy -+ 1€z —+ Bm + Py el + q’r[ﬂ'ﬁ + ®yym' (21.2)

Besides, we shall assume that even before the application of the external load, the
shell had initial irregularities w®, representing deviations from the regular surface
¢ that was taken as the system of reference. We shall, however, consider that
the initial (residual) stresses are negligibly small.

* The relevant quantities, characterizing the elastic deformation, the forces,
and the moments, may be determined from (20.3)-(20.6); in (17.41)-(17.54) the
quantities ¢, and o! must be replaced by ¢ +¢, and .+l respectively, expressing

there ¢, and o interms of ¢ and . according to (3.5).
O

For a shallow shell, &£ <<1. ¢,<<1, and according to (17.3) £l o — o) —w}. £'=1
According to (17.41), using (21.1)

x! aJlg[x,,+p(uf+ w%)]h"{ + [X,,—{-p( w2+ w;)] 5!1.114—(.\’“ 71;)51”1.
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* Owing to the smallness of & in comparison with »' and the conditions o << 1 and
w?<<1, the quantities () + /) 3/ may be neglect:d in comparison with #»'. There-
fore

T = X B0+ Xghud + (Xig = p) bt (21.3)
The elementary work of the contour forces may be determined from formulas

similar to (17.41):

B! o {0y + Py — 0y (wd + wi) | ) + [@13 + P~ Py (@l + of)] Bul+
+[Pu+ P (W] +wl)+ Pn( 0+ of) + Pa] ek
This expression may be considerably simplified by taking into account that the
projections of the contour force ¢,. ¢,, and ¢, arsz the result of the change in

direction of the normal load, of the order of pL.2. Therefore, at the free edge
Pu~pl, &y ~®p~ple] ~pLa!, while ¢, and ¢, may be considerably larger.

For a fixed edge /=0, w'=0.

Consequently, in the same degree of approximation as in the theory of shallow
shells, it may be assumed that:

Dlav! @ 80l  Pplul 4 (- Oy 2. (21.4)

Furthermore, according to (17.43) and (17.44), ani remembering that «! does
not change, we find

b= —do] BE) =h(el +ehy) nTim e — npol — nptud, (21.5)

where n, and n. are, aa before, the projectiors along the directions 7, and 7,
of the unit normal to the edge contour before deformation.

The quantity :®' may be calculated from (17.37) where it has to be assumed
that
befy @del, + (o] + w0} ) Bl 12,

Bejy o Bejy + 30y + (of + o] Jhaj + {03+ op ) bo]. K (21.6)

Introducing (21.2)-(21.5) in the equation (17.45) we obtain the variational equation for
the principle of virtual displacements of the state

83! =0, (21.7)

where 3', the sum of the potential energy of defcrmation and the potential energy
of the field of external load, is the total potential energy of the shell, i.e.,

3 =f[ G(nyel +nw}) — @yyaf — 01l - (@13 + o) @' ds +
¢ (21.8)
+ff[\Vl — Xual — Xuauh — (X1s — ¢ )WI] AiAydayda, .

1]

The quantity W' may be calculated from (17,37) in which the expressions for e,
must be obtained from (20. 3),
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*

Adyxly = — A —e} Ay, AlArxly = — Ay + of A, (21.9)

This equation means that in the state of equilibrium the total energy of the shell has
a stationary value, For an approximate determination of this state, we shall write
the expressions (17,55), which satisfy the geometric boundary conditions, and shall
find the quantity 3' as a function of the undetermined parameters Cl, m,n, ...,
which we introduced. The condition (21,8) gives a system of equations for determin-
ing these parameters:

I 1
=0(j=123.), 2 —o, ..
om

L=
ol (21.10)

For small displacements, 3! is a quadratic function of Ci; and the equations (21,10)
are linear in these quantities, For medium bending, 3' is a function of fourth

order and the equations (21.10) are cubic. The equations obtained for the parameters
m, n,..., may be still more complicated; therefore, it is necessary to confine
oneself to solving the non-linear problems with a small number of variable para-
meters, It is very important to take into account experimental data and other
considerations in order to obtain the best approximation, with a small number of
parameters, of the reguired displacement function,

Let us now consider the energy criterion for stability (17.54) which may also
be considerabiy simplified for shallow shells,

Above all, taking into account that
e <<, ep <<y, Ay~ L BB R g L HR (21.11)
we find, from (17.17) and (17,18)

S Eten e IR,

H v~

L%y o~ 8, Wy~ gy Dxlix
11 n P LR N i
Lag~wapy, D“u""f""l?l/”‘ (21.12)

According to (20.3) and (20.4)

K':l n"" ~Etz:| uf. Kllllz»w Etef, . (21-13)
Consequently,
Vo [
%y _ fm L Dy #yy Heyw1
S <<l oo Sy << L
‘u’ TR K"u 11 RL":I “1
if '—~:,, even if ¢, is very small, i.e., ¢,~s2. Thus, the terms o4, «,

in the expression for W" are very small in comparison with the terms k< +,, or
Dxyt. The terms containing G in (17.54) are also negligibly small because the
most important among them are

LG (nyw + My Bey~ LD ¥l be,

i.e,, in view of (21.12), they are at most of the same order of magnitude as the
neglected term

5f [ D} %)y ArAgda; day ~ DV () =)\ ~ L Dx Yy By,
)



* The term depending on the external surface load .s of the order

f fx,,f,‘w dz ~p 17, Vw.
el

But, as we know,
PR~ Th p ~ [telF.
Consequently, the term considered is of the order of
Et vy ey AwiR ~ Et ey L7 beyp

It is small, for instance, in comparison with the term

affx-:, o do~ [T Ete) w Bu,
[

One may also neglect the term depending on the exiernal contour load, the major
part of which is

flq’:- w, + Doy + Oy (e + em)l Sw s,
¢

where, as stated above, &y~ Lp, [Py ~Pn~Llpw ~Lf w . k

Thus, the condition (17.54) which together with e:juation (21.7) determines the Limit
of stability of the state ¢!, is reduced to the siniple form

aj(;fW"A,A,dux day =0, (21.14)

where

v=xlgm. + P 4 (el ey ey o) — (L — (o +
FehenFees— e — 24:-':,)] 3 (21.15)
+ o[%(n.. ) — (1 =) (n lu—“fz)].

The quantities a, sy, ¢y may be determined fror (20.3) and (20.4), and the other
quentities are:

Adrngy = — Agoy — w3 Arg, Adgta= — A+ 4, (21.16)
w =, 4
eu=A" s+ &2 (AMA) At @Ry,
ernm= A Uy, — w1 (AAr)” Ave +wha 1,2,

K==Et/] — ¥, D= E¥YI2Z(1 —¥). (21.17)
Using (20.5), the expression (21.15) becomes
W =Then 42Tk a3+ Thaen '(—'25 [11'1‘4' ‘zlzz+ Dvagya +
+20— e+ 2 okt a2 )4,

where s), &.... are given by (20.4).

(21,18)

In the particular case w® = 0, i,e., when there are no initial deviations
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from the system of reference o, the integral of this over the area o actually turns
into the functional (44,) given in our previous work 10.13/%*,

If the tangential surface load is zero, the equations of equilibrium of the
tangential forces may be satisfied by expressing the tangential forces of tne state
s according to (20.20) in terms of the force function ', and the additional tangen-
tial forces in terms of ¢! according to (20.23).

Introducing (20.20) in (21,7) we obtain Lagrange's variational equation with
the modification introduced by P. ¥, Papkovich /0.17/. The function ¢' has to
satisfy the condition of compatibility (20.21), whereas the tangential displacements
u'. expressed in terms of it, rmust satisfy the geometrical boundary conditions.
One may also introduce (20.23) in (21.14) whereby ¢’ has the satisfy the equation
(20.24) and the corresponding geometrical conditions.

In the exact solution of this variational problem, the static boundary conditions
will be satisfied automatically, i e., in this case they will be the natural boundary
conditions, while the geometrical boundary conditions are essential. When solving
this prcblem approximately, the natural boundary conditions will also be satisfied
approximately, a higher degree of approximation rendering these conditions more
readily satisfiable,

* We note that in /0.153/ we retained in W" certain small terms of the same ovder
of magnitude, which should have been neglected when assuming =) =», *yous
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§ 22, Equations of the Bubnov-Galerkin Method
for the Lagrange Variational Principle

In the Bubnov-Galerkin method one writes the variational equations (10.26),
which turn into the (11.12) or (11.7) upon expressing the virtual displacement
vector 87 in terms of its components along the principal directions of ¢* or of
a.

For shallow shells, these equations may b2 considerably simplified. In fact
Ww=adu et miw=e" v,y + e (§vh+ m* Svh
Substituting here the expressions for & *, €,*, m* interms of &, &,, W from
(3. 19) and (3. 20), we obtain
(3v) = (1 + €11)3u1 + €12 3u2 4~ S, T,Q
(5%),=E.6u;—'r—E:u:+E;8w han

But for shallow shells, w2 ~e¢;, << |, Ei=—uw, Es:=1, yy~ww; therefore, the quantiiies
ev.éur. ¢1:%u. may be neglected in comparison with o; fw and

(3 o) =+ wdw, (87,=tw. (22,1)

-

Furthermore, the internal force on the contour := with normal i is, according to
(8.19)

Ko — "_—”‘;’:* = (Thm + Tun) e -+ (Thani 4 Trna)er* +

+}1—1‘:‘/N1‘n1 b Nt g 2 UL 211)

r da, Ay  doy
where H* may be calculated from (8.12), ni==<inp n:= —cos¢ and ¢ is the
angle between ¢, and the positive direction of tle tangent to C before deformation.
The external contour load is
S =06+ da7 2yt - Dy o
According to (22.1)
39 = (Bt + i B w) er* + (e 2 Sw) " + m* Bw.

From (8,12), (8.32), and (11.5)

(G* —g*)ndm* =
= — (3'\ — My n?— ZM:zmn;—N; ug)(mlwn + n2de).

In the case considered, the equations {7.3) and (7.4) were transformed into (15.8)
and (15.9). Thus, from (11.2) we obtain the variational equation
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f{(¢|' - Thng— To ) (5u; + w) tw)

+ (@ — Tin— Tana) (Suz + 0n3w) + (&2 — Ny* g —
— Notny—a: H A+ My A) b -
A (G¥ — 8% ) (m1 B s + na ) bds + f f AT 3 (AT s + (22.2)

[kl
+ ThAu— T A+ 24X G ag b w)+ (AT +
+ (AT + ToAns — T1 Avs + AAsXa®) (5 22 -+ 0 8 ) -
AN+ (AN) 2 — A1 A (T B+ 275 ki
+ T kn— Xo)| 2 w) dayday = 0,

where

ANE= —D(Aw),, ky=rhiy4 v oy =1w,]A bo; =@ w)y/A,
o* 1/]4{1;‘1,’—*—2/14;2 flu’l:"f-M;.' 'lg. (22‘3)
HY = My ~ My) nyna— My (nd — 1),

If the displacement at the contour is constant, or the trial functions are chosen
sC that not only the geometrical boundary conditions but also the static ones are
satisfied, the contour integral will vanish, In general, equation (22.2) will be ap-
plicable if the external contour load is given by its projections along the principal
directions of the shell after deformation. It may be considerably simplified if
the edge contour is composed of parts directed along the coordinate lines after de-
formation. For example, at those parts of the contour which coincide with the line
3 = consl we have © =n/2 n;= 1, n.=0.

Similarly, for shallow shells the equation (11.7) may be simplified as follows:
According to (8.30) N = Thuw, ~ Thwy4- Ny,

From (8.32) the static boundary conditions may be expressed by the equations

Ql=Thn+ Tun, ®i=Tun + Tane G=G"
P3=Nin, + NS a4 Hyl Ay — niH 3 A, (22.4)

Nr= TI‘I“"I+ T;2W1+N: ﬁ

where 1), i, ®f are the projections of the external contour load along the principal direc-
tions €;, €9, m before deformation; in the firsttwo of the equations (8.29) we neglect
the terms containing N; and N3. We thus obtain the equation

f{(rm' = Tuit— Tu 8wy {05 —Thany — T buy +
(9

F (i —Niny — Ny — nyH (A - HY [A) 8 +
+(G" — G (113 + naboy) fds +
+ff{1mzr;n,l + (A Ta)a+ ThAis — Tr Aua + A A X3 bty +
=)
+[(A: T;q),: (AT )+ Tn et — ThA + A 1A Xy Sus +
F (AN + (AN 12— ArAr (kT + 28T+
+ ko Ty — X3)]§ )} daday = 0.

(22.5)

If, in order to solve this equation approximately we are given the displacements in
series form (17.55), in which every term satisfies not only the geometrical bound-
ary conditions but also the static ones, the contour integral in the expression for
these conditions will vanish as in equation (22.2).
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In nearly all cases which are of practical importance, we have 8w =0 a! the
contour; therefore, the corresponding contour iitegrals in equations (22.2) and
(22.5) vanish. Finally, if the edge is clamped, w;=0, Sw=0, % =0 at the contour
and the entire contour integral in these equation: vanishes,

X =X,=0it is possible to introduce a stress function according to (15.11),
Then the termas containing 3z, and 3z in the su-face integral in equation (22,5) will
vanish and the trial functions must satisfy the condition of compatibility (15.16; and
the geometric boundary conditions. We thus obtain Galerkin's variational equation
in a generalized form, including the modificatior. introduced by Papkovich. It
should be noted that the requirement of satisfying the indicated essential conditions
makes the choice of trial functions for y very difficult. These difficulties are
increased by the fact thet the stress function expresses explicitly only the linear
combinations of the projections of the tangential displucement and their first order
derivatives with respect to a«. In the particula- case where the displacements at
the contour C are not limited by constraints, the functions y must satisfy the
equation (15.16) and the static boundary conditior.s imposed on the tangential forces
if we want to get rid of that part of the contour irtegral which contains 3u;.
Otherwise 3u; must be expressed in terms of .
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§ 23. The Variational Equation of the Mixed Methnd

Taking into account the above- mentioned difficulties connected with the choice
of the trial stress functions in applying the principle of virtual displacement,
N. A, Alumyae has proposed a new variational equation of equilibrium for shallow
shells. In his work /V1.5/ he has proved that when approximating a function w,
which satisfies the geometrical boundary conditions for w, and a furction 1w, which
satisfies the static boundary conditions for the tangential forces, the solution of the
boundary problem of equilibrium for a shallow shell will be built up from such
admissible functions w and W which satisfy the equation*:

Eff{_‘} [Fxa1 4 %aa)? — 21 — ¥) (ear 220 — xi2)} + p +
@
+ Tu (‘w’z“ + ':lz .¥+"’I° wy —%'—u) +
+ Tn(wkn {.%w,=+mzum,_%,,,>+ (23.1)

+ T 2wk + 00 +‘“1°“’=+"1°"l—‘u)}d°+
+f{§.s T4+ 5,85 — 8w+ G(n b+ mpbag)lds =0

C

(da = A4z day day).

Here u, and & are the contour values of the projections of the tangential
displacement on the normal and the tangent to the contour

AT = ($2/A1) s + A1 ¥ /AL,
AAxT = — $1a-+ Ar1 $3/A: + Arad/As
T'=Tun?®+2Tan ny + T ns®,
S =(Ta2— Ty)n1na+ Tra(m?—m?),

Ay = — w11 — ALgeafAs, Arxia = — wg i+ Aa oAy, (23.2)
e =(Tn—-vTn): Et=en + %“'l’ 4 @% °l°=W?l LAy,
oy =w,: A,

o

2e12 = €12+ €21+, (92° 4 w3) 4 @2 (0% 4 1) Z

It is not essential here that the admissible functions  rhould satisfy the
condition of compatibility and the geometrical boundary conditions.

We shall prove that equation (23.1) will be satisfied for the actual state of
equilibrium, i, e., when all the boundary conditions, the equations of equilibrium

(AeTi)a + (AT 2+ T A — Tas Ay =0 1_.5. (23.3)

* N.A, Alumyae has derived, in the work mentioned, a variational eguation for a
sheill without initial deviations from the surface of reference ¢. Here we shall
assume the more general case, where there is an initial deviation w0 from the
gurface ¢, but there are no initial stresses, This generalization of Alumyae's
equation may be obtained by substituting in his equation w + w0 for w and
assuming 8(e; + w2 =be;, b (w + w)="t w Whereby 4y is left unchanged,



—DAsw+ Tll(‘ll+‘?l+‘ll)+27‘x(k]x+l?,+k‘,)+
4 Tealhar 4% 4 x22) + 2 =0 (23.4)

and the conditions of compatibility of deformatior 8 are satisfied.
* First of all, it can easily be shown, in view of (23.2), that
1
E‘(rll‘u“F?ru‘u + o) =y b0y~ 2038 Ty + 2538 Ty (23'5)

Further, let us consider the expression

f[ffu A+ Ty sy + (T + Tz na) “x]d"=J (Tuy + Sus ) ds,
C C

where

Up =N Uy + My lly, Ue =Mty — M, (23.6)

are the projections of the tangential displacemen:s on the normal and the tangent
to the contour.

Using Green's formula
FAjr;ds = F(f AyAy) ; da, day + f A Ay F dag day,
‘cff irids J;f (f Ay ; da, doy j;f X , 25.1)

where F and f are functions of o, and a, we find

an nyi) ds = ff{(fh Tua)y 4y + A Ty 4y} daydas,
c

{9

fr,,n,u,dssz{(mr,.)_, g + Ay Tyt gt doy day 1.2
i
¢ )

Thus

f( Tu, + Sa, )d—"=ff<[(~43 Tu)y +{(ATn)y w4+ AsTuy  + AT, +
[ =)

+ (A Tn)y + (A:Tn), Jua + A Tnsy,y - - ATy} dey day.

Using (23.3) and (3.5) we obtain

f( Ta, + Su, )ds =ff{7u (g, — why) + T (& — wh)+ E}d“
C ®

If only tangential forces which satisfy the equation of equilibrium (23.3) in the
tangential plane are allowed, as it occurs when varying the force functions, the
former equations will be valid for the quantities ;+37;and, owing to their linearity,
also for s 71;. Therefore,

cf(u.nr+u, lS)da:fJ {tew — Whu)& T3y 4 (02— ko) 8Ty, 4 12} e (25.8)

(L]

Using this equation, (23.2) and (23.5), we obtain
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1 1 jo O
* aff(r.,(mt,.+-2-..,:+...,o..,‘_;.“)+ OF PCO: '
{9)
1 1
+Tn(w’?ﬁ+'§'@1’+"'l'°z—3‘q:)+
+ T 2wk + w0 + 0,20, + 00 o) — )} do = (23.9)

= f ' {7l 3w + (0, + 0 bo) 4 T2, [l 3 + (wy + ©,°%) Bay| 1._2.}dﬂ —
- —
[E]

-~ f{u,,é T+ u §8)ds.

c

Here &» =(uw),; therefore, using (23,7)

{an (@) + ©,9) 8w, ds = ff Ty (0y + %) Az (3w} ) da, day =

T 0

= J Ty ey + o mbwds - fflru (o) 40 A 8w da, dsy,
c (&)

1 ' fn""1°+“‘1)“"td"':frn (o1 + ) ngiwds —

i 14
| Tyt 2 4], tw da, da. I—’2
- [Talw + w4y, ey 1.2,
Ty
But, from (23.2)
Aaea Agsr —
wa = A Tap o mT T Avmet 7 e

Consequently, taking the equations of equilibrium (23.3) into account, we have

[Thatw, + M Ag) p + [Ty (o + &M All, +12=
={TnA) | +(Ty A, TaeAy | + Tos Ayl g 0 - (23.10)
[Tg (a0 + 000 + T e+ )] A A +12=

= A [Ty (i 4 70 + 270 g 1) 4 T (e + 23]

The derivatives along the normal and the tangent may be expressed in terms of
the derivatives along the orthogonal coordinates, by the formulas

L= 4B, S =t 1y
dn VT T Ve g I T T U e
or
i al () ! Jd() a()
artaEm T T L amm e T (23.11)
Consequently,
T Tos ) (o + 9) + 10 22 == (T my = Ty (2 = Pz
(Thay + T tey + o)+ 1,0 ="=(Tn nm) e+ w)y + L=
- A - (23.12)

ad i
=T~ (w+w)+S—(w~a
on ds

In view of (23.9)-(23.12) we have



i G ot )

14
4 T (Qwkg+ w vz 4 0 lu3 4 wlw, -+

1 t ]
+ T (whn g w4 et o o = (23.13)
R R a Q 1
=- f(u,,n TH+u iS)ds + {T“" (@ fow b & o (w - uf)de dy +
. on Js J
C C
T S0 27 e = %)+

()
+ Toa (ke 4 2 + X3 30 d3

Let us, furthermore, consider the variation of the energy of bending. Using
as before 123.7), (23.2), (23.11) and (7.5), we ob:ain

-~ rp
5»[ ) g e b 2l (e e 22 do =
i
= f f(Mu Bryy  Mygdrg) a4 12=
J. st

“ . (23.14)
= [ Mty M Ay by s+ [ G+ i 4y
J

{3)

. . - dw
H 1 My Ay (M Ap) (Do) day day + 12=— [ (G a—) +
- E n

dH
+(I - Nyny — N, n,)l;wl ds - ff[m,.-v‘)'l + (AN, | b da, dag,
)

where

G = MYy a2+ My ng* + 2Mys 7y np H== (M, - -Mp) Ay — Ma (a2 - 1%,
Ni=  D8wfA. (AN) + (AN =~ A A Do w (28,15)

Using the equation (23.12)-(23.15), we may convince ourselves that equation
(23.1) hecomes

|"f{DAAw+ Tutfs + ns - 2) + 2Tz (ke me 20 4+

ta)
4 Toaliens - xag =2} + pY8 o ds —
s o Thelte , L9l 3. (23.16)
f(u 08 {5 ) as +~ﬂm it Ny T L otont
<
I N fa o Vo o s
S w b w) — b [bwids + HUEALAE

+(a, - #)881ds=.0.

It will be satisfied if the equations of equilibriurr (23.4) and the equations (23.3)
are satisfied together with the following boundar;’ conditions:

a. the geometrical condition
W=, duw=0 (23.17)

on those parts of the contour where the normal c)mporent of the displacement is
given;

b, the geometrical condition

ow'dn = d'l;/on, d(dwior =0 (23.18)
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or thoze parts of the contour where the rotation about the tangent to the contour is
given;

c. the static condition
r=T 1T=0 (23.19)

on those parts of the contour where the normal component of the tangential force
is given;

d. the static condition
$=3 85=0 (23.20)

on thoge parts of the contour where the projection of the tangential force along the
tangent to the contour is given;

e. the static condition
OH 2 oo @O —
Nl"l+N2ﬂ2~-’+T"‘(thﬂ)—.‘S_"w’\—wv=¢)l (23.21)
ds in ay

on those parts of the contour where the condition (23.17) is not satisfied;

f. the static condition

b

G= (23.22)
on those parts of the coniour where the condition (23.18) is not satisfied;
g. the geometrical condition
2= Un (23.23)
on those parts of the contour where the condition (23.19) is aot satisfied;
h. the geometrical condition
U = He (23.24)

on those parts of the contour where the condition (23.20) is not satisfied, In the
actual state of eguilibrium we have a combination of these conditions. (onsequently,
the validity of the variational equation (23.1) has been proved.

For approximate solution of this problem by means of this variational equation
it is admissible to take as trial functions, as it has been shown above, the function
w which satisfies the geometric conditions (23.17)-(23.18), and the function y which
satisfies the static conditions (23.19)-(23.20).

These boundary conditions are essential. The boundary conditions are
natural for the variational equation (23.1). They will be identically satisfied when
solving the variational problem. The higher the degree of the approximation, the
more exact will be the solution.

All the quantities contained in equation (23.1) and in the essential boundary
conditions may be expressed in terms of w and ¢ according to (23.2).

After convincing ourselves of the validity of the variational equation (23.1) we
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shall transform it, without using the equation (23.3) which has been obtained by ex-
pressing the elongations in terms of displacement. To that end, it is sufficient to
substitute in {23.16) the right-hand member of equation (23.8) instead of ita left-
hand member. We shall confine ourselves to the c:ase where Y is a single-valued
function; by repeated use of (23.2) and (23.7), and after laborious calculations~—
which we have omitted here—we obtain

j‘j {[en ‘UJkl\)&Tn-}-(eu - wk.z)S?':z-i— L"Q }dﬂ:
i (23.25)

=—.SE{T}{M‘P+KH (k22 + 2, + x22) + x22 A0 4n) —

{a}
— 'fz — 2,y (k12 + "?1) } Mdo 4/,

where

/= j{(m f:— — —;-"hz ;;) 82+ ﬁ [Alln)m + Ay —
¢
ny (A;'r"),z + —;* Azn’lzmm ] a«b + I,_’Q } ds. (2326)

t
Ni==e1 — Wk — -2—01’ AT

-
e =267 — 2whkiz — @ (02 + 03*) — wyo; ' 1,2,

Here we have assumed that ¢, are expressed in terms of Y, and

1
e, — —2—O|' — &, e,

have been considered here only as expressions for quantities which are not neces-
sarily related to the displacements.

The derivation of (23.25) may be considerabl: simplified by taking into
account that the first term of the surface integral i the well-known invariant of
coordinate transformation, and the second term, wiich expresses the variation
of the Gaugsian curvature of the surface during defirmation, is alse an invariant.
Consequently, one may find at first the expression >f this integral in Cartesian
coordinates and dfterwards express the invariants 'n terms of arbitrary curvilinear
coordinates,

Introducing (23.25) we obtain the following vaiiational equation equivalent to
(23. 1):

j‘jl DAACU—I— n (ku + 1?( lu)+ 2T ki + 1.?1 'lll)+
(s}
o+ Tax (hsa -+, - xar) + p  Sdto ﬁ{é A&ty (ka8 ezl

! (23.27)
+ 22 (Rit ‘f"lfl) - l?z— 2%z (k12 -|—I‘I’z } S+do+

+M"""' +Nams = 24 T2y s y (o) -0t
[

_HG.; G)s<v3_:’)+£‘,,ar+ﬁ,55}as——l=0.
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If all contour integrals in this equation vanish, we obtain from it--since <@ and -.
are independent--the equation

Sf{DAAw + Tulkon + 8, 4 x)+ 2 (ke + 4, +x2) +
[U)
+ T:z(k1:+xgz+lu)+p}5’lldﬂ= Ol (23.28)

ﬁ{ _EIT AAY 4 xi1 (Raz + G - ¥az) - eaz (b + ) — Ky —
(s}
’_‘2"l1(kﬂ+"?2)} b4do=0. (23.29)

These equations of the Bubnov-Galerkin method have been recommended by

V.Z. Viasov /0.4/ for the solution of the problems of the theory of shallow shells
when the tangential forces are given along the entire edge contour, the function y
satisfying the static boundary conditions (23.19) and (23.20) for the tangential forces,
and the function w satisfying the geometrical boundary conditions (23.17) and

(23.18).

It may easily be seen that in this case the equations (23.28) and (23.29) are
indeed valid. In fact, expressing the conditions (23,19) and (23.20) in terms of y
by means of (23.2), it is possible to prove that everywhere on the contour & =0
and u:—} =0; therefore, owing to (23.11) the contour integrals in the expressions

for I are also zero* and the other contour integrals in (23.27) vanish owing to

(23.17) and (23.18). But if tangential displacements u_ and i_ are given ou at least

some parts of the contour, the quantities & and 8;'— may have arbitrary values on
n

these parts of the contour. Consequently, the contour integrals enumerated can be
zero only in the particular case when 4. and &. satisfy certain differential
relations, which we shall not give here owing to their complexity.

As may be seen from (23.27), the equations (23.28) and (23.29) are also appli-
cable in those cases where 1 satisfies the static conditions (23.19) and (23.20)
for the tangential forces along the entire contour and the function w either satisfies
the static conditions (23.21) and (23.22) along the entire contour, or one of the
conditions (23.17) and (23.21) is satisfied together with one of the conditions (23.18)
and (23.22).

If tangential displacements are given on the entire contour, the function ¢
must satisfy the condition of compatibility and the geometrical boundary conditions.
As may be seen from (23.16), the variational equation (23.1) leads in this case to
the same Bubnov-Galerkin equation as does the Lagrange principle.

If tangential displacements are given along a part of the contour and tangetial
forces along the rest of it, but the particular case considered above not valid, one
has to use the equation (23.1) or (23.7). In our opinion, in such a case the problem
must be solved with a high degree of approximation.

+ Results of an analogous transformation for a plate may be found in /IVL6/.
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§ 24. Application of the Formula for Stutically Allowed Variations
in the State of Stress to the Theory of Shallow Shells

We have examined in the previous sections the variational methods for the
solution of problems of the theory of shelle based on the principle of virtual dis-
placements; we have also considered the mixed raethod, where the bending and the
stress functions are varied,

In this section we shall elaborate a new method of solution for the problems of
the theory of shallow shells based on possible variations of the tangential forces.

Let us give some relations of the theory of shallow shells which are needad in
the following.

For X* = 0 and X% = 0 the first two equations of equilibrium (15.8) may be
satisfied, wi%h the error inherent in the theory of shallow shells, by the force func-
tions y, according to formulas (15,11)

L N S R 7 O S /TSN, (I " |
W4 0e T AA, s BT T T ae, T AL 6e, oD
where
AW, =y, G==1:). (24.1)

Substituting (24.1) in (15.8) and using Gauss' formuia for the undeformed surface
(2.27), it may be seen that (25.3) will be satisfied in the assumed degrec of appro-
ximation.

Let MY (i, k= 1, ?) be the particular solut:ons of the third equation of equilib-
rium (15.9) without taking the tangential forces in‘o account. Then, the equation
(15.9) will be identically satisfied by the functions of moments 4, and y, given
by

1
My =M Va, My=MYy - (W) L2 (24.2)
where
‘”x 'P; 24, -
Wy meo— . S B SR
BT 0w A B, B (24.3)
LI 2 ¥ 94, . T 5 )
Wy=— . 2 . LTty L2
MTUN Ga, A A, da thay 12

Sustituting (24.2) in (15.9) and using Codazzi's coniitions for a deformed surface

(k) s — (AR + B A + B yp=0 12 (24.4)

it may be seen that (15.9) will be identically satisfied, In order to determine the
values of the florces, moments, and deformations >n the contour, let us consider a
right-handed trihedron {3 = 7}:

T=lmoal, m=la sl s=lk Al (24.5)

s
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% with the apex at a point on the contour C of the shell, Here T is the unit tangent

fi is the unit binormal to the contour, and m the unit normal to
We shall, furthermore, introduce the following geometrical

to the contour C;
the middle surface.
quantities:

W=~ ¥ #uy --the normal curvature of the middle surface on the contour of
0
the shell in the direction T,

i = 3 kyuny —the geodesic torsion of the curve C;
i
_ dn - :
r=r d': = divii-—-the geodesic curvature of the curve.

We shall denote the tangential and the normal derivatives of the function { as

tollows:
2

2
d _\Vmo % 4N A
ds A e dn A

[EY

i=a

f2

’ (24.6)

Let «, and . be the relative elongations at the coutour in the directions n and
7. and &, the shear angle between nand 7; let also ., and =z, be the para-

’
meters of curvature in the system of the coordinate axes along i and 7.

Then, according to the transformation formulas for the components of de-

formacion we have
[ :Z:i,n,nl. tﬁ.—_ElUr‘f-, = El"ﬂj!‘,
if ij 4]
€= gy + a7y 6ag (Tiny + ) (24,7)
.l N
"n:L"ii"I"i* "'X=L"-ij‘l‘jr V’n::Z"t'f'i”/~
&7 17

i

=xnn; o nT G b Y (yn; + LA

(24.8)

*i

vector ¥ of the peints of the contour along the axes of
F=un+v~wm, using (15.1}, (15.7), (24.7)
the unit vectors of the trihedron /IL.3/

Resolving the displacement
the trihedron {7 = =} and assuming
and (24.8), and the rule for differentiating

g s S d (24.9)

dx aw dm wmw— w - dq -
_n,_—.~lm, Ad%_—_ti -:nn,g_f.':u:m,

G + &, + k) is the normal curvature in the direction n, we obtain:

where 7,=
du -~ . 1 fdw\?
'n:;-i-(d-‘-ku-!-kn)w-#-; ;’) (24.10
" ] (du- 2 10)
o= —4vu- sw+ S|
5 2 ds)
2 du . duv 12T dw duw
g = o T - WU T
" ds dn wr ds dn
de diw dw d_ rdw
i ik Sa = == — 1=
" dn? " ¢ st tdnc S an \ ds
d dw + dw
=_— (= P
ds \dn ) ds (24.11)



* Let Tn and S be the normal and tangential forces at the contour, and Tr and S the

same forces on the surface element with normal T, Then, on replacing Tij by
the stress function (24.1) in the transformation fermulas

T,,:ETunlnj S,:X Tyvty, T, :E Ty (24.12)
i i [y
we find /III.11/:
L A L AN A
g P T g 5 An(ds>’

) 24.13)
__dmy, s (

N (dn)+ ds °
Furthermore, let G and H be the bending and twisting moments on the contour, and

G; and Hy the corresponding moments on the section with anormal 1. Then,
after replacing Mu( by the deflection in the transformation formulas

G=XMynn,. H=—H =3 My, G =X My,
o i i {(24.14)

we obtain the expressions for the moments at the :ontour:

dh dw dw d dw
j=— D —— — = - Hi= -y = (== 24.15
¢ D(an’*'vaa R dn)' H=-H=D4 ')an(4s>' ( )
G d¥e dw - d¥w
= ——t ity ——
ds? + dn dn?

In view of (24.2) they can be expressed in terms of stress functions as follows:

d¢ -
G=C' == Lup, Ty

ds
(24.16)
- Lt | Ay C
A=H (e + dn '4") tab
. ay, - . .
Ge=G{+ ;:,' —(t & a)
where
G":E M?/n,n,. H°:~—E M?jn,'\'j.
[N IN; (24’17)

Go=X My, b= N kn. ba= b,
i i

L

Let us consider the variational formula (13.7) for ¢ hallow shells. Using the simpli-
fied relations of the theory of shallow shells given in Chapter IV, we obtain from
(13.7) the variational formula of the principle of al owed variations of the state of
stress

— = — A
5 (08% — wbL, ~wpl.) de +J(v ¥, — -'%a 6) a5 +

o

- 1 1 3 24.18
+‘w6H|::B§‘j‘(W+2 Emelw.>da‘m,z7[~d:j, ( )

.
) ik

Here W is the additional work of deformation and W its variation, which is

w=3 (?u“'n + QMMm )= @ar vt xiadMip), (24.19)
iR ik
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A

A : :
:» and 4, are the components of deformation of the surface, expressed in terms

of forces and moments, according to the elasticity relations:

A A A
ey THUT Y~ Tl sn=K' (Ta - +Ty) tn= K (1 =) Ty (24.193)
A A A
=D (M - YMg)h xa = D (M- ML) rg= DLy, My,

<. and -, being the same quantities but expressed in terms of displacements
according to (15.7).

The variational equation (24,18) will be valid if the variations of the forces and
moments satisfy the equations of equilibrium (15.8) and (15.9), and if the variation
of the state of stress is performed without variation of the contour forces and
moments:

(24.20)

=0 G=A a0 o (24,20a)
are spatisfied at the contour.

If the angles of rotation «;, are not varied, then, according to (24.18) the states
being approximated are the statically allowed ones under continuous deformations.
But if », are varied, the approximated states do not possess this property (§ 13).
We shall examine only the first case, where the displacements do not vary.

On integrating by parts, we can obtain from the variational formula {24.18) the
equations for forces and moments of the Bubnov-Galerkin method for the integration
of the conditions of continuity; it also enables us to formulate the boundary con-
ditions for the theory of shallow shells in terms of forces and moments.

Substituting for 38X and M__.i from the equations of equilibrium (7.1) and (7.5)
in the variational equation (24,18) and integrating by parts the terms with derivatives
of forces and moments by the formula

2

j‘;‘L‘}’:;T’? s - (2 feAnds - (g‘ 2 < % da,da, , {24.21)
0 i ‘C ol ¢

Sl = o i

we find a new variational equation

S[?n&, B @) Jem Ao

(24.22)
- YSEK S )3T 4 (b — 5g) M) do.

oo
o) ik

Since in (24,22) we approximated the statically allowed states, the contour term
and the non-integrated term vanish. Consequently,

-
A A
“ ZI(‘m ) 8T + (e~ xip) BMp| o = 0.

Yo Dok

(24.23)

Whence, in view of the arbitrariness of #7, and 3M,, one can derive the elasticity
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* relations. These also lead to the conditions of :ontinuity for forces and moments
and also to the natural boundary conditions for the functions of forces and moments.

In order to obtain the equations of the Bubiov-Galerkin method, we substitute
for "7._ and 34, from (24.1), (24.2), into (24.23} Since the particular solutions .:
do not vary, we obtain from (24.23)

L Py Xy 8-, 94
‘ f‘-n - ad — A~ :—’f)+
JJi AP, A4, g
@

f
A W, AW, OA;N - A
+ (42~ ‘x))( R + :“g; ;;11/ + 1_2] + [(‘u - )Wy

A A
AL IR L1 le %) (¥ 4 + ¥ay) J de = Q.

Since o, does not vary and # and i, are absolutely arbitrary, we obtain two
variational equations:

e o8, 3, dy
\ g‘l‘ﬂ now) Ardyg +A,.4, ) da, ) e ]-
) (24.24)
0\ « A . A -
o l("u ‘u) hpp+ (‘22 - "ﬂ) L -2 ('L - ‘u) kn‘a"}d: =0

{ R A TR,
L!"ﬂj(‘l\u - ) (;1‘2 “3:: + :41‘1;1 ;};:)

EE L 3% 3 AN, =
[CHEE ("I. b2, A 9n ) + l,_z)dc =0, (24.25)
the former containing the variation 3 and the latter the variation a,. Let us con=

sider the first of these variational equations, The first square brackets contain the
derivatives ds./dy and ¢3y/dede,. After integrating the expression (24.21) twice by
parts we can get rid of them. After integrating by parts the terms containing

1y 8nd ¢, in equation (24.24) we obtain the condition of compatibility for the actual
state (Gauss' condition). Consequently, the cor:esponding expression obtained by
integration becomes equal to zero. In equation {24.25) the terms containing =,

and their derivatives varish by virtue of the conditions of continuity, which follows
from Codazzi's conditions,

As a result of these calculations, which we shall not give here owing to their
laboriousness, we finally obtain istead of (24.24 :

j‘) 8} dday = I,

(24.26)
U]
where L. is the left-hand side of the equation of compatibility (15,16):
A A : /
L=K’'ba¢ "(‘121 - :u‘u - ;u‘n - 'l\n‘u + ‘-'kn:xz) f {24.26a)
and I; represents the contour integral
dA; dA by .
R LR I e LA i RV (24.27)
[



* Here

Ag=tq— K (T =T} Ag=¢; —K' (T, —~Tp) (2428)
Ape =, — K {1 4-¥) 8.

The guantities A,, A  arve considered, for the present. as being different from
zero, bccause they will approach zero during the solution of the problem.

The variational equation (24,21) enables us to establish the boundary condiiion
for the force function y and to validate the application of the Bubnov-Galerkin
method to the integration of the equation (15.16).

1. Let the tangential forces T, and S be given on the contour. Since these
forces are given, we obtain from (24.13) the conditions

8= — —— =10,
"= e Y s \ dn

e R - o ERE )
ds
which are satisfied for #= 2"’1 —0. Hence, in this case the contour integral I, in
(24.27) vanishes so that the Bubnov- Galerkin method may be used for integrating
the equation of compatibility (15.16). This case has been considered by V.Z. Vlasov.

2. Let the tangential displaceinents U and v be given on the contour of the
shell, and let & and d—" be arbiirary functions. This case has been considered
by N.A, Alumyae /VL.6/.”"

In view of the arbitrariness of & and ’;ﬂ', the integral I1 vanishes if the
an

following conditions are satisfied on the contour:

Ay Ay,
2d, — T 2 =2 =), Ap 200 A =0,
" ds e

3

or, ilaking into account (24.28)

_ g depy oo aF 3
T gy 2y T i (24.29)

G=F,. $Aylc=".
where
Fp=K (Ta— T 5 Fe=K' (I ~Ta). Fps=K (1 +4)S. (24.30)
We assume that T, Ty, S are expressed in terms of y according io (24.13). Sub-

stituting for ¢, ¢, and ¢, from (24.10) in (24.29) and using the Guass-Codazzi
conditions in the form given in /IIL.11/,

~ ~ - ~

d, 4t - di -~ -

L T uT=0 - —— 4 afa -3 -0

a Fan THIEO L e (24.31)
’l+£ :?z"::n’- ?n:'?'kn—kn,

we find the conditions which must be satisfied by the given displacements



* d%u u dv dv '-diw du o (dw -’_L dw)l +
= _,=2_ & W dw _3 R AL .
a  “dn ds ' as o dn) ‘(us
~ dw AF,

pubicify _ 7-) il
+w_-+2t += Wy ke Mg (24.32)

dv 1 osu
—_+‘u~aw+ (’u) =F,. trA,l =0
ds [4

Here we have eliminated the unknown mixec¢ derivatives of the given displace-
ments by using the formulas

drdey , te
ds( ) dn\x.tsv = (24.33)

where ¢ ig an arbitrary function. The right-hand side of (24,32), denoted by f, may N

be written as

dar.
/:K'[r,,m B Sy +v)d—s—],
dn dn

(24.34)
Fy= K (T= =T,
when using the condition of equilibrium on the cortour /III.11/
AT,  dS .
gy FT = Tox=n,
The formulas (24.32) may be considerably simplified for particular cases. For in-

stance, if the contour is a geodesic middle surface then »= 0 (rectangular cylind-
rical strip). They may also be simplified when the bending w is subordinated to

the boundary conditions of hinging or clamping. For these cases we oblain, res-
pectively, the conditions

~dw , dT, daTx T B I
=k [ e R = | =0 (24.35)
@4nin 4 _ o =T, abd,,l =0 (24.386)
ds dn Ve .

3. Let the normal force T, and the binormal displacement v be glven on the
cortour of the shell:

a4 ~
Ta= g4 us (24.37)
Substituting for ‘%’: L 4:3;;, in (24.27) we obtain
[¢ % as
f[(m,,—m, s 4o Mary,, i‘-‘ﬁfijus ::a{.An;’ .
. ds % 152 C
C

or integraling the last term by parts, since i is arbitrary, we obtain:

dA, dAgs ot ‘A
(Ap— Agyn— Do 4 pddns & —):(),
A= T, ds?

(e 25— S (Ol 0

DRIG A SR

Fuado
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* Whence, substituting for A, A , and A from (24.28) we obtain

/d.-v < )] dw  dw ’-'dw +2';'d_.v tu ,“ i
\(f'! d\‘ dn ds a5 ds
S de G (24.38)
T st [1 ds —T ) ]
dF, dF,,J d’ F
=(F,— _-— = —
Fo—Fax dn 2 s ds? ,.)

Here we have used the Gauss-Codazzi conditions in the form (24.31). Thus, for
the integration of the equation of compatibility according to the Bubnov-Galerkin
method, with the boundary conditions (24.37), it is necessary ihat the conditione
(24.38) be satisfied and that the term outside the integral should vanish. If ¢

is single-valued, this term vanishes identically. The condition (24.38) may be
replaced by a simpler one for contours on which » = 0.

a4y

In this case, we obtain from (24.37) - =0. Consequently, we can assume

that on the contour, 3y = 6. Then the condition I, = 0 becomes

A l."n‘ad 0
ds =0

,J S dn s

[

Since in the general case 3?;‘:0 it results from this that A; = 0. Then we

obtain for y the boundary conditions

du diu i
=11 — - B e Fy = KT —y x = 24,39
b= 5 (d‘ KT =T Spdng| =0 (24.39)

4. The binormal component of the contour load S and the displacement along
the binormal U are on the conlour of the shell

5_,,_*1(4_“«)“%;.,-::_ (24.40)

ds \dn ids

In this case the function 1y satisfies the conditions /IIL11/

du d . RIFZEANEN /n_:. 2 ar o dw
— - — 4 — ) — w S =
s Yan T2 \dn) T\ s rEE Y 4
s (24.41)
e o +~dw ) d-:.f( ~ + 1 du~\2i1
- g —sw4 — () |ds=
T st da an " dsJ | 2\ds/
s

mop, Sy W B I‘F ds.

dn il ds

{j_f .’J‘;uas ”‘W.,‘ “a,ds —W‘m”C:o (24.41a)

The latter expresses the condition that the function y ehould be single-valued.
The boundary condition for x = 0 may be obtained directly from (24.41). If the
edge of the shell is hinged or clamped we obtain, instead of (24.41), respectively

AL L (24.41b)
¢ dn T as  dn
o ‘1,":"_“‘ . dﬁ‘
ds an (24.41c)



* The condition I, = 0 can also be exactly satisfied. The boundary conditions for v,
found in this section, may be used for solving the problems not only by the Bubnov-
Galerkin method, but also by diffe~ent ones.

From the variational equation (24.25) we car oktain two of the Codazz! con-
ditions for the mements Integrating by parts the terms contalning derivatives of
Y; we can obtain

A A —
A ?ff{[l Aurgy — (ANAH)-:' —xudy, - c.;"w:]a‘% + 1_2; daydz,, (24.42)

17
where

= f[ (R =2 ) 80y = Cony - = 7mg) B 14.:
P d (24.43)
and 3, and 3, are the projections of the vectcr 3% on the normal and the binormal
to the contour of the shell, and x_and x_ are the bending deformatlons on the

contour {24.11); » and », are the same quantities expressad in terms of
moments:

S =0 (G, - G). P =D (L) R =D (G — VG)). (24.44)

On replacing +, by (24.19a) in the variaiional e juation (24.42), it becomes

Iy = D' { f(l.,?fh “+ Lo ) dayday, (24.45)

(2}
where

-d—M—(l{»ij“ MMy - M, (24.46)

]
L‘—:z de;

and N may be determined {rom (24,3).

Since 1w, is arbitrary, the Codazzi condi'ions for the moments L,=L,=0
and the elasticity relation on the contour %= and A= result from (24.45).
These elasticity conditions may be expressed as

877 v
w4, D4 et (24.47)

' (G - v6) = — -
L' (Gs - ¥0) st Y un dn ds\dn /'

where G;, G, and H may be determined from (24,14). We ncte tha! the Codazzi
condition L; = 0 may be satisfied by a single function of moments ¢, assuming

M= D+ ). My=D(1 w12, (24.48)
where
L S AL
PR b AA ey, Y
g =1 0 (24.48a)
A; Oa;

Then, we shall have to deal only with the variational equation (24.26).
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Let us now formulate the principal types of boundary conditions of the theory
»f shallow shells, for force¢ and moments.

1°. On the contour of the shell or cn parts of it, let there be given: the vector
of the external contour lozd #%, and the bending moment G. The static boundary
ccnditions will be exp—essed in the following form:

dA dw dw
P,= Ty, Pe= S dmr =Ny + Ny - —— Ta— .
AT T T B = Nt Nt T Y s (24,49)

o

= .

Yrom these we can eliminate the derivatives of w if the contour or a part of it is
a geodesic of the middle surface (x = 0). In this case, we obtain from (24.11)

13 P
x, B . ’/ns:»—i(dl‘->, (24-50)
5! ds\dn
Whence we find
5 s
dw A dw ~A
_d: = —‘ s + ¢y, ; = AJ HpstdS -+ €

where .. and . are assumed to be expressed in terms of the moments according to

(24.44), "

For an arbitrary contour the third condition of (24.49) may be satisfied by
the variations

R v
APme = A RN, + mtNy — —— =11
ds
bercause w does not vary, and &r,==3S =8

2°, The edges of the shell are freely supported: w = 0, G = 0; from (24.11)
with w = 0 we obtain the relation

s

A A
x,:x( rv,“d.v ¢corst).

u

Thus, ail the boundary conditinns are expressed in terms of forces and moments:

L
A

¢, =T, Pc=S5, l‘;:v, y "’J‘{’\nx“":"" (24.51)

where ¢ is a constant.
3°. The edges of the shell are hinged:

uosv=w=0 =0 (24.52)
The conditions u = v = 0 are equivalent to the boundary conditions (24,35):

dw n das a7
el ) —— e — Te =
s =K !>L2+ == ] Ty (24.52a)

From (24.11) we find two different expressions for dw/dn:

4 A
™A dw 3
- ] rads + G — = f—;*ds+c,;
bl

dw _
dn
$

dn



* Equating these we have
£ A
f(._ J,‘M),b-:c: “onst. (24.52b)
u

Consequently, the conditions for hinging (24,52) are equivalent to the conditions
(24,52a) and (24.52b). They become simpler if tte contour of the shell is a geodesic
line of the middle surface (x = 0}. In this case, we obtain from (24.47) ¢, -G =0,
f.e., Gy = 0. The conditions (24,52) are then equivalent to the conditions
das dTe
ds T dn

Te=:9T, (24 ) =0 G=90, G, =0 (24.52c¢)
4°, Let us consider the case where the ed¢es of the shell are rigidly clamped:

dw
. (24.53)

Under these conditions, we obtain from (24.41)

s dr-
(2+v)—£_d—": . Te=vTp. (24.53a)

From (24.11) it results that LI SO 0, or according to (24,44),

Go— G =0, H=0 (24,53b)

Consequently, the boundary conditions (24,53) are equivalent to the boundary condi=
tions (24.53a) and (24.53b) for forces.

Thus, the fundamental boundary conditions »f the theory of shallow shells have
been formulated in terms of forces and moments,

In summing up, let us note that from the formula (24.18) for the statically
allowed variations of the state of stress, one can deduce the generalized equations
of the Bubnov-Galerkin method (the first of these is simply (24. 26)).

{ f Idagday =1, D7 { f (LS, + L) doyday = I,
> Sy

e

From which, if the conditions of continuity of defcrmation L = 0 and L; = 0 are
satisfied, or if they are satisfied in the variation:1 form

"fuv;d;,da_,:o; (24, 54)
[ET)
f rl_la‘fl‘dﬂ'dﬂ’ =1 (24. 548.)
o
we shall obtain the equations
=0, (24.55)
fp=0, (24.55a)

which enables us to formulate the boundary condit ons,
According to the above, we reach the following conclusion: in order

to be able to integrate separately one of the furdamental equations of the
theory of shallow shells, namely, the equation nf compatibility L = 0 in
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* the Bubnov-Galerkin method, i.e., the equation (24, 54), it is necessary and
gufficient that the contour integral I, should vanish. We may also arrive at the fol-
lowing conclusion: Since, for shallow shells, the Codazzi conditions L., = 0 may
always be satisfied, either by means of a bending function w, or by a function of
moments ¢, the variational equations (24.52) are identically satisfied. As a
result, the condition I, = 0 must be satisfied. For that, the following elasticity
relations for moments must be satisfied:

Vol 94 —
 { < vrg) = M .= .22 st .
O (% 4 vry) = My + A, 02, + 2,4, da, + (ks + 22} ¥ L_g
)= MO _.’.(L_m 1% (24.56)
DU =)= My 2 \4, o3 +A,. da, -
o A b 4
_A,A, gr. A, . aa, — (kg + ) ¥

or

@ e O D (MM 1R
N U e, T AAy 0n P ~ WL
I 71 oby oo

My = M?z“ LG <] il‘

2\, 01, R (24.57)

¥ 94, $y  JAy
e e ) gy — DT (L) M g
Ay ey A da,) it A+ Mg

Thus, when the elasticity relations for moments and Codazzi's conditions are
satisfied, the statically allowed variations of the state of stress of the shell occurs

without variation of the stress functions 1, and .

The variational method given above is in fact a very general method of inte-
gration of the fundamental equations of the theory of shallow shells. This method
may be applied in two different ways, depending on the form in which the elastic.ty

relations are written,
1. We satisfy, by a series, the elasticity relations (24.56) and, consequently,
the third equilibrium equation (15.9), assuming
W= X fattmn (3 ) b =L Cnbian 2 02) (24.58)

b= S At mn (3 2h $2 7 D B (7 3a). (24.59)

where W («,, a,)and Yo {u,, a,) are given functions satisfying the boundary
conditions, The functions 4,1z, 2 and {upafe,. ) are not subject to any boundary
conditions and may easily be chosen according to the structure of the relations
(24.56). After eliminating the coefficients A and B =~ from (24.56) we obtain the

relations between f  and C,_ .

Other relations for f ., and C = may be obtained after integrating by the
Bubnov-Galerkin method the conditions of compatibility

fj [K7 884 - ((nf, — myrm — %ok — taky + 2kygryy )| dayda, == 0. (24.60)
[}
2. Let us take the series

M= X TonMome (0 330§ = 2 Conbme (3, @), (24.81)

moa mon

[ 3t -2l WAl d o w e
ORI V.
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* and also the series (24,59} substituting for A.. &#nd B, in the elasiicity relations
(24.57) and eliminating them afterwards from the expressions obtained. we find the
relations between i_'mn and C . Other relations between them may be obtained by
the Bubnov-Galerkin method from tihe squation

ff{xlu* S DM ) (Y — My AL +
) (24.62)
F 07 [ My, Gk — k) + Aoy ey — Ve — 2(1 & v) k”M,;];\ AMdrda, = 0. K

This method is illustrated in Chapter XIV Ly the solution of problems of
lurge bending of rectangular cylindrical strips. Lei us make a few remarks on the
substance of the variational method proposed in this Section. As it may be seen
from the above, the fundamental characteristics of this method are:

1. All the three equiliLrium equations (15.%) add {15.9) are exactly satisfied
according to Castigliano's principle.

2. The condition of compatibility of deformation (15.16) is satisfied according
to the Bubnov-Galerkin method.

3. Only the force function ¢ is varied, while the bending remains invariable.

From this it follows that the method propesad here is different fro.n that
proposed by P. F, Papkovich, in which:

1. The condition of {15.16) is accurately satisfied.

2. The third equation of equilibrium {(15,9) is satisfied according to the
Bubnov-Galerkin or the Ritz method,

3. Only the bending function is varied, while the force function remains un-
variable.

The mixed method set forth in Section 23 is an intermediate one, bacause
according to it both the force function and the bencing function are varied, while
the equilibrium equation (15.9) and the condition ¢~ compatibility (15.13) are satis-
fied according to the Bubnov-Galerkin method. T-e amount of calculation work in-
volved in these three methods is nearly the same n solving geometrically non-linear
problems. But when solving physically non-linea: problems, the method proposed
by us may considerably reduce the amount of calculations. The consistent appliza-
tion of the variational method to the solution of problems of forces and moments
enables us to broader the field of solved linear as well as non- linear problems which
are of practical importance,
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§ 25. Fundamental Relations for Shallow Shells cf Revolution
and for Cylindrical Shells

We have set forth in the preceding Sections the general non-linear theory of
elastic thin shells in arbitrary orthogonal coordinates, including aiso several un-
common particular cases; thereforc the theory developed is quite complicated.
The application of the formulas deduced there for the solution of particular prob-
lems becomes even more difficult owing to the large number of concepts and
notations which must be looked for in the corresponding Se:tions of the book. in
order to make it easier for the reader who is mainly interested in the most important
applications of this theory, we have stated in this Section the fundamental relations
of the non-linear theory of shallow shells without giving their derivation. We shall
recall here the necessary concepts and notations. so that the reader can acquire
a cursory knowiedge of the first part of the book which is necessary for an under-
stonding of the following part.

Let t be the constant thickness of the shell before deformation and ¢ its mid-
dle surface. The position of a point on this surface may be specified either by
Carfesian coordinates x, y, z, or by curvilinear coordinates n and a,, consider-
ing the point as the intersection of one of the curves of the family a, with one of
the curves of the family a,. These families of curves form a net of coordinate
curves on the surface o (see the beginning of Section 2). The formulas (2.1) give
the relation between the Cartesian and the curvilinear coordinates of a point on
ihe surface . Let us consider for inatance a spherical surface defined by

equations
v =Remnbcose. y=Rsinhsing, 2= Reosh (25.1)
Evidently
Ay 2=

i.e., the expression (25.1; is the equation of the surface of a sphere whcse radius
is R and whose center is situated at the origin of the Cartesian coordinate system.,

If xoy is the equatorial piane, then f =8, = const, or z=rRcosf,= const
is a parallel, the position of which is determined by the angular deviation 6, from
the pcle; ¢ = gy == const defines a meridian, situated at an angle o, to the
initial meridian. The position of a point on the sphere is determin:d by the inter-
gection of tke circumferences # = 6, and g =,. Thus, ¢ and ¢ are the curvilinear
coordinates (the so-called geographical coordinates) of the point on the sphere.

Let ds be the distance between two infinitesimally near points on the sphere
(line element). Then

ds? = d? + dy? -~ dz? =(Rcoshcose b — RsinBsin yde)? +

4+ (Rcos¥sin=d) | Rsinbcos pdp)? 4 K sin? 0d? =
— R*d%* 4 R*sin® Bde?. (25.2)
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Here Rd8 is a line element of the meridian, Rsiif is the radius of the parallel,
and R:inhd- is a line element of the parallel,

For the general case of the arbitrary orthgonal coordinates
ds® = Aida® + Ay da.®,

where A| and A, are arbitrary functions of a, end a,.
lowing that the coordinate lines a,and a, are the lines of curvature of the
surface g, i.e., lines along which the curvatures of normal sections of the
surface are maximum and minimum. We shall derote these curvatures by k1 and
k,. We shall thus finally assume that

Ri=ku=1R, bi==kyp=1,R., £ir=0), (25.3)

Besides, we shall confine ourselves to the particular case where ¢ is a surface

of revolution or a cylindrical surface. We shall denote the corresponding Gaussian
coordinates by a;=a and 2:==3. The coordinates « and § may be chosen so
that

ds? = da” 4 Bae? (25.4)

where B is either constant or depends on «.
Consequently,

A=1, Av=R{x. (25.5)

The geometrical parameters of the surface ¢ m st satisf{y the Gauss-Codazzi
conditions (2,27):

o, N _, a8 up_ 6
7 =4, 20 ks o’ 3: kikoB. i (25. )

Let ¢i. e; and m be the unit vectors of the tangents to the lines « and f
on the surface ¢, i the unit vector of the outer normal to o, where the trihedron
ie1. & m} is right-handed. Let also o0 be the tr ie middle surface of the shell be-
fore deformation, obtained from ¢ by the displac ement Mw® whose maximum value
ie of the same order of magnitude as the thicknes i of the shell; the surface ¢ is

either shallow, i.e,,
(Bl <1,

or the initial deviations from o are rapidly varyiig, so that = divides into
shallow parts,

We shall specify the position of a point on the surface i by the same coord-
dinates « and §, but now the lines « and B will not be, in general, the lines
of curvature of the surface :°, because the principal curvatures of ¢ have in-
creased by x*, so that the curvature of the coor iinate lines has increased by
«},=». These initial changes in curvature (we s1all assume that the stress
caused by them has been removed) will be given Ly the formula (20.1):

. Ao " d '
T Ay = *;;(’ e ) (25.7)
Bapo _ L WA dw  aB
- B G 6 fa
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Let us assume that under the action of the load, the middle surface of the
shell transforms into the surface 6!, composed of shallow parts; the position of
a point on this surface will be specified, as before,by @ and f. The projectiona
of the displacement corresponding to this deformation, along e;. e:, m, will be
denoted by a', ¢', . Let s be the relative elongation caused by the load of an
element of ¢ which before deformation had the direction &; and 2:, the change
in the angle between &, and €,, alsc caused by the load. Then, according to (3.5)
and (20.3):

om0
.:vz=ka:+%(-§fg';—)'+»;¢ jad datg"*";— <0’Lﬂ ‘”iL) (25.8)
o= (5 ) 8 |
R

The changes in the curvature uli and the torsion x}z will be given by formulas
similar to (25.7):

o , 8 ( i ‘du'!>
M= G 2T T NE e S
. (25.9)
Bl = Lo el 9B
2 £ of? da da

The co.responding tangential forces T7), 7!,=T}, the bending moments M!, and
the twisting moments M/, =M, whose positive directions are shown in j"F‘igure 6,

may be determined according to the formulas (20.5):
Ti==K(al4-vel), ThH=KI{l -9 s, K= Et(1 =),
M= D (e o)y M, =D (1 — v}, 125.10)
D=ENI2(l — 4. 1.7

Here and in the following the symbol }—L__é shows that the formulas which are not
written may be obtained from the given formulas by permuting the indexes 1, 2
and replacing ul by vl, and « by f§, whereas the other quantities remain unchanged.

The equations of equilibrium (20.11) and (20.12) must be satisfied on the whole
surface; in the case considered they become

1
9 BT+ 1u 1128 =,
a P T 3a
J a7l Ja
YTy 4+ s 47, 2 =,
! @t P + e (25.11)

Dasw! + Ti (k43 + x) + 2T}, 0, + ) +
+ Ti(ka+ 1) +2)+p=0, (25.12)

Here and in the following we have introduced the Laplace operator

A::%{»::[B 2 (...)}-{-% 70;7 ) (25.13)

the normal pressure being p >0 for external pressure. The shearing forces are
determined from the formulas:

- - D2 (A {9 !
M= DL (sw), BNj=—D (4@, (25.14)
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Introducing (25.7)-(25,10) in the equations (25,11 and (25.12), we obtain a system
of three non-linear differential equations for u' , o, o,
In the following we shall assume that the brundary contour C is composed of

parts C, on which a = const and 03«4, and f parts C, on which f§ = const

and 0a<a, Let the external forces and mon ents, along the principal directions
of the surface ¢, be applied to the contour C,: the normal force p,, the tangential
displacingforce 1, the shearing force f'\I:, and} the bending moment 1\711. Their .
ppositive directions coincide with the positive di-ections of the internal forces shown
in Figure 5. The analogous forces and moments applied to the contour C, will be
denoted by p,, v, N,. and M,.

According to formulas (17.2%)-(17.31), the follewing conditions must be satis- -~
fied at the free part C

Ti=pi, Thomv, M= M, L2
M *’%'ggaiz"'r"(:;:ﬂ+%"\+%1’(%’4'%):”" (25.15)
N+ L (% ) 2 R,
At the fixed edges the purely geometrical conditions must be satisfied:
4 =0,0=0, =0, ":—:=0(n (of}] Zz. (25.186)

At those parts of the edge contour where the clan ping is incomplete, mixed boundary
conditions must be fullilled, as for inatarce:

a. wher the contour C is hinged:
=0 v'=0 w=0 =0 (25.17)
b. when the contour C is freely supported
@' =0 u'=0, c==Th, M =M, (25.18)
or
w' =0 7l=p, Tia=r1, A= A1, (25.19)
The boundary value problem in this formulation it called the problem of the theory
of shells for the displacement componerts. It is rery difficult to solve it directly,
in spite of the simplifications already made; therzfore, one looks very often for
approximate solutions of the problem by ineans of the variational equations of equi-

librium. For one of these equations we may take the variational eguation of the
principle of virtual displacements

I =0, (25.20)
where ' Is the sum of the potential energy of de‘ormation and the potential energy

corresvonding to the work done by the external lo:.d; eccording t» formulas (21.8)
and (17.37), for the cases considerea this sum eqtals:
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13
) ~ ow' N
I = { S‘(Ml f(,’;._ o peat U — /\/lwi) Baﬁ} -+
¢

a=0

- - . - Pt
(Mz e t;T —pvt o — Nzwl) dn}’ﬂo ES

LA

+
{ (
° , 25.21)
-+ j.j{pw‘ 4 Ki %(s‘l Fell - U v (ele) — zl,-_,)~}+

(9] '

+ D{%(x: R T ,:22)]} Bdadp.

The generalized Bubnov-Galerkin equation (22,5 may be succegsfully used for solve
ing the problem for the components of the digplacement, We shall write this equa~
tion for the case under consideration, assuming, in addition, that:

bw' =u on C, (25,22)

Taking into account the initial Jeformations and also somewhat modified
notations, we obtain the equaiion

v
a=a

{j[(pl o T awi (s T (M~ ‘ﬁl)a"_:—J Bdﬁ} 4

an0

']
¢ ) ‘ - b 1 Bt
i {_\ir,(pz — Tyt k(= Tsul (M A % ) _B]da}p—o
0
({2 o7, aB |, 3
‘*\H[; (BT}H—E‘—’ : T;-B;J"“"*'[_;,; (2T} +
(25.23)

(&

ar! ok
USRS o _]w — BT\ 4Ty + pYiw' -+

—0; L 2 e
8. B Gl gy (0w dw! s
+aa[BT1ka, : u‘:)+"‘~‘<aa+a¢>+EN: o
c 0 [ g 8wy Gl 4
Td$[7”<f‘)'x+(}a)+[\l+

0w 4 AN 1 0 —
—g—TI(da L dp)B_lo'w}d:d? 0.

Let us assume that for a certain critical value of the external load, in addition

to the form of equilibrium ¢i , an infinitesimally near form of equilibrium o* i8
Then we shall say that the shell is at the lirait of stable eyuilibrium.
We shall assume that the shell is either shallow or that its transition from the form
of equilibrium <! to the form of equilibrium ¢* occurs with the formation of a
large number of "waves" so that the middie surface divides into shallow parts.

The projectiors of the additional displacemen's on ¢, e, m will be denotzd
by u. v. w. The additional elongations, the shear, and the chang(s in curvaturs
which vecur in this case, are determined according to formulas (20.4) and formulas

like (20.1):

also possible.

Ja

di i
o= bon o (240

e (90 9By ] o dw (0w awl Y|
'Z"(afx tueg-)y twhd gl tom) s

of. g 00 0 [ S ALE 0w')
e =lg tp L ()t

dw /[ dud  dw'
+BF< e A} (25. 24)
Juy ow oB 1 o 0 /1 ow
Xy = , Ba=-— . = 1z = *—("-—‘
Ja? da  d2 Lo dza\ B 93
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The corresponding additional elastic forces and moments are

Tv=FK(e,4e), Tia== K(1 =)y, I."’
My == (x +vies), Ma={1 - v)r . by (25,25)

In the state of neutral equilibrium, besides the equations (25.11) and (25.12)

equations (20.14) must also be satisfied, which for the cage under consideration
become:

A . 9,
9a BTO+ 3 frog o=

g o)+ oT 8 _ (25.26)
OI(BT“’)-*_ 5 + T2 w =
DAY + T\ (kg 4 2,0 4 !) F2Tah 42+ T (b4 "+ 1)) +-
+ T+ 2T 4 Tl = 0 (25.27)
d J
V=D w), BNy= - D L o). (25.28)

Since the loss of stability of the shell occurs without additional loading, the static
boundary conditions of the type (20.30) must be sztisfied at the free edges:

Ti=0, Tim0, M= 0; 1,2
BN+ S 4 BT 7, M mp (25.28)
Avl+i’3’:f~+rll%+ T ‘%:o on C,.
For fixed edges the following conditions must be :atisfied
u=0, v=0, w=1, 1‘)f~=0 {on C1} ‘17,}1 (25,30)

For mixed edge conditions, variouc combinations of the equation (25,29) and (25,30)
must be satisfied,

The equations (25.26) -(25.27) may be replaced by the variational equation

=3\ teNy 2 o dw e | T oy
j{rl(dz)+ﬁ T'-‘ da dﬂ+83(0ﬂ)+ (25.31)
(s}

+ Kot 6+ 2me 4 2(1 — ) e +
DT a2 +2(1 )} Bdse = 0

where by the variation the displacements u, v, anc w allowed by the constraints
are approximated,

The equation of equilibrium of the tangential forces (25.11) may be approxi-
mately satisfied, within the approximations of the theory of shallow shells, by
assuming

a7l = 2 9B M ¥

BT apr + dx da ' ? dat (25.32)
1o 2w

B g (8"

L ey
Bla= -9+

* The symbol 3 (open Russian E) stands for energy here and in the following - Translator.
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where the force function ! must satisfy the condition of compatibility of deforma-
tion:

A8 - Er] i 2xlaxds — xi (ke g ) 2 (k) 40,0)]=0. (25.33)

Besides, the functions 8! and y! must satisfy the equation (25.12) and the boundary
conditions. Instead of solving this boundary value problem, it is possible to solve
the equation (25.23) of the Bubnov-Galerkin method, expressing the function of def-
lection in the form of a series

@ = Cywy 4 Cowy + ... (25.34)

(where each term satisfies the boundary conditions with respect to w!) and equating
to zero the coefficients of BCi. The function w[, determined from equation
(25.33), must satisfy the geometrical boundary conditions for uf and v!. The

static boundary conditions for the tangential forces T§ and Tl12 will be automatically
satisfied during the solution of the variational problem; the higher the approximation
considered, the more accurately will these conditions be satisfied.

The variational equation (23.1) of N. A. Alumyae is very convenient for many
cases, because there we approximate the functions w satisfying the geometric bound-
ary conditions for w, and the functions vy satisfying the static boundary conditions
for the tangential forces, but these functions will not necessarily satisfy equation
(24.33). Here the index I was omitted for brevity; U, and Uy are the projections
of the displacement on the normal and the tangent to the contour, given at any
arbitrary part of the edge contour. In particular, if tangential forces are given
along the entire edge contour and the function w satisfies the condition &w = 0
on the contour and one of the conditions M; = M; or 3% on Ci, we shall obtain
the equation de,

ffwmm+ Titk 4+ 0+ x) 2T (s + 1) 4 (25.35)
(1)

+ Nttt pyswde [ ({2884 lbs 400+t
to)

w3 (oy 4110 — xF2 — 2xpz l?z} 8 da=0,

That is in essence the equation of the Bubnov-Galerkin method,
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§ 26. A Shallow Shell Considered as a Plate with an Initial Deflection,
The Fundamental Equations in Oblique Coordinates

When taking a plane as the surface of reference o, we may consider the mid-
dle surface of a shallow shell before the application of the load as a surface obtained
from a part of this plane after the normal displacement w© and without residual
stresses; we shall assume that the stresses have been removed by annealing.
Therefore, we have to assume that in the formulas of the previous section

by = ky= 0. (26.1)
We shall specify the position of a point on the rriddle surface 60 before the defor-
mation by the rectangular coordinates x, y, w? (Figure 12). Then, the equation

of the surface ¢° becomes:

z= W= F(x, ¥\ (26.2)

Figure 12

The planes x = const and y = const intersect ¢ along curves which differ only
slightly from the normal sections of the surfac¢. The curvature and the torsion
of these lines will be determined from (25.7), assuming B= 1, i.e.,

PR TN U s QU i S NS Y (26.3)

The elongations and the shear caused by the load before the loss of stability, when
the surface o° turns into o', must be detern ined from (25.8):

b 9wl Loel N dut dwl
Ry +2(av )+ax'ox‘ (26.4)
oul  oul I dwl s Buwl duo !
Q,},=_"l __‘.+'3L,L+a_"_.__+_,i?.’..
23 dy dx  dy d¢  dy oy 23

In the other formulas in § 25 it is also necessairy to assume k, = k, = O and B = 1.
The theory of a slightly bent beam or plate given here has already been applied

in particular cases in the works of L. G. Bubnov /0.2/ and /0.3/. It has been given
in the general form, seemingly for the first tin.e in 1939, by K. Marguerre
/VL11/. In the workbyV.Z, Vlasov/V1.8/this theoryhas been given in a rather
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modified form: there he assumed that the displacement of a point of the surface
is specified by its projections on the tangents to the lines of intersection between
the surface and the planes x = const and y = const, and on the normal to this sur-
face. Denoting these projections by ul, vI, wl, we express in terms of these

the projections of the displacements on the axes e, &, m (i.e., on the axes x, y,
w), which have been derived in this work:

dud

d—“”dﬂ‘,u}zzv'*?—w‘,w}:w‘. (26.5)
¥

i
h=u —

Introducing these expression in (26.4) we obtain the usual formulas of the theory
of shallow shells*:

1 Jut 1 Z0wi \1 ¢ uw® du | sawl \2 . .
= LY S =t (Y T,
YT "‘) o @ Tt () e L (26.6)
: ou! ! | !
B B Ly gty 2 G
dy dx ax oy

Thus the formulas (26.4) and (26.6) are equivalent, When deriving them it has
been assumed, as is generally done in the theory of shells, that the squares of the
rotations of any elements of the surface ¢Y are small in comparison with unity
because in our derivations we have used the equations

cow=l~%-+-~'=l,Sin¢=v—‘%+-~-=?, (26.7

where ¢ is half the angle subtended at the center by the arc which determines the
maximal cross-dimension of the considered part of the surface 00, If this arc
is part of a circle of radius R, the length of the corresponding chord being a and
the deflection f, the measure of the shallowness of the shell will be:

LR __a (26.8)

It is, of course, necessary to determine the upper limit of this quantity, on the
basis of the error admissible in using the approximate equations (26.7). It is often
shown in literature that a shell may be considered as shallow when a > 5f (see, for
example, /VL7/). In our opinion, such an extension of the field of application of
the theory of shallow shells is risky, because for a = 5f it follows from (26.8) that
a/R=8/5and ¢ = 0.8; then, by equating to unity the quantity cosv-=1-- % =

= 0.68, according to (26.7), we admit a gross error, )

Therefore, we must also put a restriction, even in the general case, on the
magnitude of the initial deviation f of the surface ¢° from the surface o: we shall
assume that f is maximal, 1. e., of the same order of magnitude as the thickness of
the shell, Evidently, this restriction is not essential from the point of view of ap-
plications of the theory, because at the present state of the manufacturing technology
of thin-walled shells, the initial deflection is smaller than the thickness of the
shell.,

If

F<<R, (26.9)

* In /V1,1/ we derived formulas (26,6) and other relations of the theory of shallow
shells in the above formulation, for general coordinates and for an arbitrary
surface of reference o.
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we shall call the shell "very shallow" or "a slijhtly bent plate", In this case, it
is possible to simplify the fundamental differen:ial equations (25.12) and (25.33)

of the theory of shallow shells, With k, = k,= 0 and B = 1, they become, after
introducing the force function y! and the deflection function w according to (25.9)

and (25,22):
) Ry PP | Pw! b A sl dwl\
Dasw! ~ r \ ot + o dud )+ cxdy (bxdy + dzdy)

- S (e e = (26.10)
dxt ayz o > -p=0;
dhe! \2 dtwl  Pwr Sl 3 ,,,u !
say — £t (2L Lo _
' Et[(dxdy ) +2 dxdy  dxdy dx2 a_yz Iyt )
- &= 2= (26.11)
ot dat |

In fact, after introducing the total deflection
" = WO »}_wl R (26.12)

measured from the plane XOY, we obtain the equations:

" o 6.13)
My P ay " (26,
Adig" — . R A S =
Dasw oyt a2 2 dxdy dxdy a3 dyl +/7 0:
T/ \2 Ha" P dumt FPwt Fu
aay —Ett(——) - S (5 Ty,
dxd, Ix? dy2 Ixdy gt 3yt
4 =L - (26.14)
where
pr=p— DA w (26.15)

is the equivalent normal pressure. When considering a bending for which the total
deflection is considerably larger than the thickness of the shell, the underlined
terms in equation (26,14) may be neglected, pruvided that the conditions (26.9) are
fulfilled. Thus, equations (26.13) and (26.14) coincide in this case with the well-
known von Karman equations for the bending of a plate under the action of a certain
equivalent cross-load p-.

If a very shallow shell is traced or part ¢f a second order surface
wl e — “l”% - %’ '%—‘?z»‘) +cx ey fr

the curvatures x,°, x°, 7, will be constant, In tiis case p' = p, and the equations
of equilibrium of the curved plate with pronoun::ed bending will have the form of
the equations of equilibrium of a flat plate.

The generalization of the equations (26.1() and (26.11) for a shallow shell with
varying thickness has been given in /V1.14/. The corresponding equations in
Carteslan coordinates are of the following form:

ol (LA 18 2 -._‘l_l,”‘l” _ﬂ'_
FEANI 0:‘)+—(1+l)616y< uxdy dy’(
e L a0 1 o
vl_r)x’(t' ay* )+6»‘(t' 61’)]
S[( TN o Sul P Pwl (0w  Swiy el g
E[ a:ay> dx dy OxOy e ayt ¥ Iyt ) ]

Il

dyr  Oxt
F.) dml
2 (P5r) 20 - 955 (0] ay)+oy=( ay')+
e PLIN .S
+v L&x’ ( Bv’)+0y’( ]— dy? dx* +
sut "o ) o Ve

AN A R |
+ ax? oyt dxdy Jxdv

(26.16)
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When solving certain problems, as for instance when studying slanted plates
(in the form of a parallelogram) or the problem of torsional buckling of a cylindrical
shell, it is8 more convenient to refer the surface ¢ to oblique coordinates x', y',
related to rectangular coordinates by the formulas:

Y =y4xtgy, x'=x/cos¥, (26.17)

It has been assumed here that the angle between the axes x' and y' equals ¢ + ®/2
and that the x axis is at an angle ¢ with the x' axis. The derivatives with respect
to x and y may be expressed in terms of the derivatives with respect to x' and y',
by the formulas:

- 9 9 _ ¢
J“lo, <31’+ ines ) 3y oy (26,18)

After carrying out these transformations in the equations (26.10) and (26.11), we
obtain:

Aaday — Et_jf 2w ? *w Fup e ATy
* ms' { dx’ 3y’ ) ax’ ay’ ‘3,\’0)!’ [:O,v"(r:gr’?_T )
dv L
I (0% 0 | 0% MY W | P
DAy A — ——{ )
. cosln ov'“(()x 0’3 +0\’2<0v ' ”)
0% dtw n?wt
—p I }4_ =1,
ax’dy’ \ox’dy’ ox’dy’ ) P (26.20)
Here,
LY
Ap = ~——e 2 _—
* cos’v (dr"+ sin ¢ dx’dv + dy's/ (26.21)

is the Laplace operator in oblique coordinates.

The expression for the forces 7. Ty, 74, T4, referred to the oblique coordi-
nate axes may be obtained by considering the equilibrium of an element with the
slides dx, dy, dx'. From Figure 13,

Thcospdx’ == Toidx+ Tidy,
(T — Tasino)dx' = Tudy 4 Tadx, [
Tacos® =Ty cosp 4+ Trsin®,
7Y —Tasinw = Tpsing -+ Tacos$.

Yty

Figure 13 (26.22)
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Besides,
Ti=Tycos®, Tr= Ty —Tsins. (26.23)

Whence, taking into account that

=T —_-Ty=—2t =
7| dy’ » Tll T-l -_ Oxdy ] 7“- axt » .
and also the expressions (26.18), we find
Tl B r;‘=-;,_’.’i_. Ty —— . 3% (26.24) .
cose op’?’ T R I cosgp dx'?

By analogy, we find the expression for the moments. Evidently, according to
(6.8) and (6.9) we obtain the same expressions, replacing in (26.22) and (26.23) the
quantities T, T, Ta. T:, Ty, T1.1, Tyand T by My, My, — M, Ma, ——-M;’z, My,

— My, M, respectively. Thus
My = Mo+ Mz tge, Mu+ Masing = Mising + M cos e,

Miz= M cos e, M= M/} Mysing. (26.25)

Hence, by recalling that

Pw
axdy '

dw Pw ;
M[=—D<3x—, 4 5;) Mip=—2(1—v

and once more (26.18) using we find that

D /o olw COw Ay
M = — —— tsing —— — — )
! cos?p dx”+ iny ax’ay’ +( day"? tsine ax’dy’ /i’
D o w M e
My = — 0% 4 ine 0% (T 4 cinte 2
? cos’e {dy’® +sine dx'dy’ T '( Falt tsine gx/oy’ )} '
D(l —v) dw dhw
Miym — D=0 (00 e
1 cos?o ax’ dv’ + 1 Qd_y”
D1 — v} O fw)

(26.26)

My =— st

cos’ g dx’ay’ ' ax’t
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Chapter VII

SOME PROBLEMS OF THE THEORY OF STABILITY AND
LARGE DEFLECTION OF RECTANGULAR PLATES

In Chapters VII-VIII, some problems in the theory of flexure and stability
of plates are dealt with, to illustrate the application of the general non-linear theory
of shells to the solution of particular problems in the simpler cases, To readers
interested in other problems of this kind, we recommend the monographs of
P. F. Papkovich /0.17/, V.1, Feodos'ev /0.25/, and A.S. Vol'mir /0.6/, in which
extensive bibliographies are also given. We also draw attention to the monograph of
A.R. Rzhanitsyn /0, 24/, devoted mainly to the investigation of the stability of sys-
tems of bars and plates without initial curvature,

§$ 27. A Theorem of P, F, Papkovich on the Convexity of the Region of Stability
of a Shell under the Simultaneous Action of Several Stresses

We shall consider the stability of shells under the simultaneous action of sev-
eral stresses, assuming that these stresses pie:(s,§),. .., papa{s, §) are proportional
to the numerical parameters p,....,p. and the functions ¢, ..,¢» remain fixed, As
an example, we can consider a cylindrical shell under uniform axial compression and
uniform pressure on its surface. By investigating a formula of type (25.31), charac-
terizing the variation A3 of the sum of the deformation energy of the shell and the
potential energy of the stresses acting upon it, it is easy to see that it contains the
initial stresses of the shell 7|, T} Tl only in the first degree. And as these are
linearly dependent on the parameters of the stresses pi,...,p. then, with fixed
displacements of the shell, the quantity A3 is a linear function of the parameters.

A3=3u+p13|+.. ,+pn3n.
where 3, 3y,...,3, are coefficients dependent on the displacement of the shell.

The equilibrium of the shell will be stable if under any displacement the
quantity A3 1is positive,

If one considers the quantities p;,...,ps» as coordinates of the points of some
n-dimensional space, then the totality of the values of the parameters pi,...,p. for
which the equilibrium is stable and the totality of the points of the n-dimensional
space corresponding to them can be called the region of stability, P.F. Papkovich
/0.17/ has shown that the region of stability of an elastic system is always convex.

A convex region is a region having the property that every ray issuing from
any point of the region intersects its boundary not more than once, The totality
of points T + cT', where c 18 an arbitrary positive number, forms the ray issuing
from the point r(pi,...,ps), parallel to the vector F(p/,..., pa').

Points on the ray will have the coordinates (p;+¢pi'},..., \Pa+cpa’). In order
to demonstrate the convexity of the region of stability, we shall assume the contrary,
that the region is not convex, and therefore under a monotonic increase of the para-
meter ¢ and a displacement of the vertex of the vector ¥ + cF' along some ray
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issuing from the point T of the region of stability., the moving point intersects the
boundary of the region of stability twice.

Here it is obvious that after the first intersection of the boundary for some
value of the parameter c, > 0 the shell will be unstable, and after the second inter-
section of the boundary of stability with ¢ = ¢, > ¢, the shell again acquires stability,
As for ¢ = ¢ the state of the shell is unstable, then for this value of the parameter
there will exist a deflection of the shell w!, for which the change in energy of the
system is nonpositive, i.e.,

A3 0 with c=¢,>0,
where
A =3y (p1+cp) I+ ..+ patepa’) Fa (27.1)

On the other hand, with ¢ = 0 and with c = c, > <, the shell is stable and therefore
at w = w! we have

43>0 when ¢=0 and when ¢ =c¢,.

If some investigates the variation A3 of the energy of our system for a fixed deflec-
tion w!, then, according to (27.1) it will turn out to be a linear function of the
parameter ¢ and therefore will be either monotorically increasing or monotonically
decreasing, or constant, But this contradicts the previous three inequalities,
according to which with increase of ¢ fromc¢ =0 .0c = ¢, 3,139 decreases and

with the further increase of c toc = ¢_, A2 again becoming positive, increases.
Thus, our assumption of non-convexity of the region of stability leads to a contra-
diction.

We shall draw some conclusions from the theorem on the convexity of the
region of stability.

We shall first consider the stability of a sh:1l under the effect of two stresses
acting simultaneously and characterized by the piurameters p, and p,. The boundary
of the region of stability will in that case be a curve cutting off the segments p,, and
pax ©on the coordinate axes whose sizes are equal to the critical values of the para-
meters p, and p, under the separate influence of each of the stresses.

In the region of stability we shall consider :wo points with the coordinates
{p1x — m1,0) and (0, ps« — mz) where v and =, are sufficiently small and whose signs
coincide respectively with the signs of the numbers p ~—and p, . In view of the
convexity of the region of stability the straight linie connecting the points indicated
will also belong to it,

4 i) '
— + = |
Pa—M P - M

Hence it follows that if the stress parameters satisfy the conditions
BBy B0, -250, (27.2)
P Pax Pix b

the equilibrium of the shell will be stable.

The results obtained can be generalized to "he case when three stresses, cha-
racterized by the parameters p,, p,, and p;, act simultaneously upon the shell.
Obviously, the points with the coordinates (pi -5, 00), (0, pu — n., yand (U, 1, pa: —n3),



where g, 7., and 17; are any small numbers having the same signs as P,

p,, and p,, respectively belong to the region of stability. Hence it follows that

the segment connecting the first two points will belong to the region of stability,

and so will any segment connecting the third point with any point of the segment
which connects the first two points. Consequently, the reglon of stability will
include every point of the area of the triangle, having for vertices the three above-
mentioned points lying on the coordinate axes, The points within the triangle satisfy
the relations

P + _P1~+L=l, Pi >0, i=1,2, 3. (27.3)

Pa—" Pw—M Pu—Ta Pik

and consequently, every point of the parameter space which satisfies the relations

By Pr Py B i, 2,3
P|k+Pu+ P " (27.4)

lies in the region of stability, for then one can always choose the numbers »;, =,
and 7; so that the relations (27.3) are satisfied.



§ 28. Stability of a Long Plate under Simultaneous Longitudinal,
Transverse, and Shearing Stresses

We shall investigate the stability of a plate in the form of a long strip, freely
supported at the adges, under the action of longitudinal, transverse, and shearing
stresses. These stresses are assumed to be uniformly distributed along the edges
of the plate. We shall denote the respective linear forces byp,, p,, and

In the literature /VIL1, 2, 3, 4/ one finds Wagner's formula for determining
the sets of the critical parameters of plate stresszs

=2+ 2V TF 5+ )6+ 2 VT e ), a)
where
m-px,%, °z=Pz,:’DLv “lz=‘,':’,; ' (28.1)

b is the width of the plate, D == E/12(1 —»).

T. V. Nevskaya has shown in her dissertatio1 /VIL.5/ that this formula is
erroneous. In fact, in the special case 6, = 0, frrmula (a) takes the form

(01 46) — a3 =4, (b}

In that case, the boundary of stability will be the set of two branches of a hyperbola
(Figure 14).

Figure 14

Obviously, the origin of coordinates is in th¢ region of stability. The ray
issuing from the origin of coordinates intersects tie stability boundary at two points,
which contradicts the theorem on the convexity of he region of stability.

In the literature /VIL.1, 2, 3, 4/ one also firds Wagner's equation for the sta-
bility of a strip clamped at the edges, which, for 3, = 0, has the form

gfz=<%+%+a,><%—+ 8+a[>- {c)

As in the preceding, it can be shown that this formula, too, cannot represent the
equation of the boundary of a convex region of stability.



We shall investigate the derivation of the correct equation for the boundary of
the stability region for a freely supported plate given in /VIL5/. To solve the
problem we shall apply the energy method, choosing the trial deflection function

w = fcos l'hl cos {-(x—my), (28.2)
where ;. is the distance between two crests, measured along the x axis, m is the

tangent of the angle between the direction of the wave crests and the y axis. Along
the long edges of the plate this function satisfies the condition

w=( for y==tb/2

Along the short edges the boundary condition w = 0 is not satisfied. However, if the
plate is sufficiently elongated, it is natural to expect that this will not cause sub-
stantial errors,

The stability boundary will be determined from the condition that the variation
of the sum of the deformation energy of the plate and the potential energy of its
stresses be equal to zero. For a flat plate with k; = k, = 0, we obtain according
to (25.31) the equation

°9=ﬁffl0{ ;Z'f+ PRl *“)((my) -

S s
+(l;v> 0u + dv) +T,<_ ) +T,( >+ (28.3)
for, L 2 52} dsdy =o.

The displacements u and v should be chosen so as to obtain, as a result of the com-
putations, the smallest absolute values for the compressive stresses.

It is easy to realize that the smallest values of the compressive stresses are
obtained if one gsets u= v = 0. For convenience in the further computations, we
shall introduce an oblique coordinate system, setting

X—my=2 y=S. (28.4)
In that case it is evident that
() 0 06y _0f) 9
nx oz ' v o 9z (28.5)

w == fcos xs/b cos w2/}

By making use of these relations, the evaluation of the integral in (28.3) can be
simplified; here, as the function w is periodic and the plate sufficiently long, it
~an, with sufficient accuracy, be considered equal to the corresponding integral
along one wavelength, multiplied by the number of waves in the buckled plate.
Using this and (28,1), we shall set up the equation 03/0f=0 or
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+2a,[m’ +<%)’]~ 4mo;> =0, (28.6)
To simplify the calculations we shall introduce the notation
p=(m)eny, (V)= (28.7)
If we introduce this quantity in the equation (28.6), we obtain
(t+m?+2¢ +6m* + 92 (1 + m?)] o1t 4 (28.8)

+ o (m*+ 1 4 m?) — 2a5my =0.

Noting that in the equilibrium condition the variation of the energy of the system
under the possible displacements is zero, we shall determine the values of m
and ¢ from the conditions

0Hdm =0, 3304 ="

2m{l 469+ 4 o (@ 1)) — 204 =10, (28.9)
2 +6m? 4 2¢ 4 2m* 46, §-0am? — 23,,m =0, (28,10)

Multiplying equation (28.9) by m/2 and taking (28.8) into account we obtain

I+ 9P + 3y + o0 — 3amp==0. (28.11)

Similarly, multiplying equation (28.10) by y and si.btracting it from (28.8) we shall
obtain

(I+mi)(l -4 49) =0, $=V1+o,. (28.12)
Introducing this expression in (28.11) we have

om=24+2VT 8, +o. (28.13)

Subtracting equation (28.10) multiplied by y from :quation (28.11) and using
(28.12), we obtain the equation

qfm =642V T¥erd 2. (28.14)

Multiplying (28.13) by (28.14) we obtain the required equation for the boundary of the
region of stability:

3=+ 2VT1F5+a)6+2VIForta) (28.15)



§ 29. Determination of the Reduction Coefficient of an Infinite Plane Plate
Supported by a Ribbed Network under Longitudinal Compression

We shall consider a wide plate, uniformly compressed in the direction parallel
to its short sides. As long as the load compressing the plate is less than the criti-
cal load under which loss of stability occurs, its dependence on the mutual approach
of the edges is linear. However, when the compressing load exceeds the critical
value, then the further approach of the plate edges proceeds almost without increase
in loading. Thus we see that the "specific resistance"” of the plate, i.e., the ratio
of the compressive load P to the mutual approach of the edges, starting from the
moment of the loss of stability, will decrease in inverse proportion to the approach
of the edges towards each other,

We call the ratio of the load P compressing the plate to that load P' which
would be necessary to attain a given mutual approach of its edges without buckling
the "reduction coefficient” ¢ of the plate for a given mutual approach of its edges:

v = PIP. (29.1)

The merit of introducing the concept of the reduction coefficient into practical
building calculations belongs to 1. G. Bubnov /02.3/. He investigated the combined
work of a wide plate with ribs, placed along its shorts edges. If the ratio of the
plate width to the length is large, then one can consider that the loading necessary
to compress the plate after the loss of stability, without very large deflections, is
defined by Euler's formula. The loading P, as had been shown earlier, can be
considered as equal to the compressive force at the instant of loss of stability of
the plate:

P—oss. (29.2)

Here s is the cross-sectional area of the plate, and s; is the stress appearing in
the plate at the instant of its loss of stability, defined by the Euler formula, On
the other hand, it is obvious that if there existed supplementary supports and the
plate did not lose its stability, then the stresses in the plate would be equal to the
stresses o¢_ in the ribs supporting the short sides of the plate; then the loading
of the plate P' would be defined by the formula:

P = a.g, (29.3)
Taking account of (29.1)-(29.3) we obtain for the reduction coefficient the quantity:
¢ =1/, B=oacfo3>1. (29.4)

1. G. Bubnov in his works /0.3/ considers also the definition of the reduction
coefficient of twisted plates of large width having an initial deflection (see /VIL.6/).

We shall further consider a narrow plate, i.e., a plate with a small ratio of
width to length, In that case, a considerable increase in membrane stresses will
occur under compresgsion even after the loss of stability. Under uniform compres-
sion of the edges, when all the points of its transverse edge are uniformly displaced,
we shall have to consider the fact that while the middle part of the plate, removed
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from the longitudinal ribs, hardly resists furthe:  reduction of the distance between
the transverse edges after the loss of gtability, the deflection of the parts close to
the longitudinal ribs is made more difficult, and therefore in those parts of the plate
stresses can appear which are considerably largar than the stresses in the middle
of the plate. This leads to the fact that the reduction coefficient for a narrow plate
will be much larger than the quantity indicated by (29.4),

A number of authors /VIL.6/ occupied themselves with the problem of determ-
ining the reduction coefficient. By starting from insufficiently well-founded hypo-
theses, they derived a series of computational formulas, which can be considered
only as first, rather crude, approximations to reality,

Among the existing solutions of this problem, the solution of P, A. Sokolov
10,17/ deserves special attention. He considered the problem of determining the
reduction coefficient of a plate of very large dimensions, supported on a network
of mutually equidistant longitudinal and transverse ribs. We shall denote the dis-
tances between two neighboring longitudinal and tranaverse ribs by b and a respectively,
The equation of equilibrium and the equation of compatibility of deformations of a
flat plate are obtained from (26.10) and (26.11), setting w0 = 0 (in view of the
absence of initial bending). If, as distinct from the above, one considers one move-
ment as positive when its direction coincides witl. the positive direction of the
deflection, these equations will have the form

AAq»:Et[ ﬂ)‘_ G pel (29.5)
dxdy ox? avt )
M Pul o Ll N w (29.6)
AMe! — L. T T . —p=10
Darw ayl ax? da? gyt + 2 dxdy dxdy L

Here w! is the deflection of the plate, v is the stress function giving the membrane

stresses
9 o

(%]
Ti=— 2 -, Tio=—
! oy’ EP R dxdy

P is the transverse pressure on the plate, and x i:nd y are rectangular Cartesian
coordinates, We ghall effect a change of variables to dimensionless quantities
which considerably facilitate the calculations:

wl

’ £

, §=2xm/b, n=2yxfb. (29.7)

Then the preceding equations will take the form

AA@:(%)’_%:T.%’, (29.8)
e M et
N R (29.9)
where
P g P AL =T T (29.10)

Utilizing the previous relations, it is not hard to convince oneself of the correctness
of the following theorems on freely supported sim lar plates which we define as those
having the same ratio of their sides and divided b:’ ribs into the same number of
strips.
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a) Similar plates which are under transverse loads only, have the same
relative deflections w, if the transverse loads acting upon them are in the ratio

Eti/bt;

b) Similar plates, which are under longitudinal loads applied to their edges,
have the same relative deflections w, if the longitudinal loads per unit length of
the plate edges are in the same ratio as the corresponding values of Et3/b2,

Hence it follows that for similar plates, the critical strains under which infinitely
small bucklings occur, are proportional to the respective values of Et?/b2, and
that to the same relative deflections of the plate correspond the same values of the
ratio T /T, ,, whereby T, is denoted the critical value of strain for the stert
of buckling of the plate.

We shall clarify the mutual relation for similar plates between the shortening
of the distances between the transverse edges, to which correspond the coordinates

=N A S =k, =

Here it is assumed that the length of the plate L. is divided by ribs into 2N, +1
parts of length a, and that the origin of coordinaltes is situated at the center of the
plate and the axes are oriented parallel to its edges. The decrease of the distance
A, between the transverse edges of the plate is given by the formula

L2

1
Ay = — % gx.
dx

~L1,2

According to (25. 8) and (26, 10), in our case

o =i‘i+l(‘2'”_')’=_7;&,‘_ o AL A Y
ax 2\ dx Et Et \ dy? ox? (29.11)
LR A Pl d IR Y i SR i 3
"=y +2( 0_)‘) Et 2\ )
vy dal L owl dwl o {1+
2 = ox + 3% + ox 9y 2 £t oxdy’
L2
I (22.12)
! J e\ "o, 2 dx)J )

-L,2

In order to attain such an approach of the plate edges in the absence of buckling,
one would have to apply the stresses

TV = - Etayl,.

We shall assume that along the width of the plate L, there are 2N, + 1 strips.
Then the total load in the absence of buckling of the plate would be

P'=— LT\ = Et8, Ls/l. (29.13)
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In reality the load applied to the transverse edges of the plate is

L 52
Pe— | Tdy=— | Dygy

“Li —in

Making use of the dimensionless variables (29.7), we obtain the formulas

N
P _ L et} (29.14)
Pl i

fﬁ L¢ Lodwyn
Jlog ' 50 2(05)‘

where
h=(2N, +1)%. Ay == (2N, 4 1) =,

Hence it is apparent that with the same relative deflections of similar plates the
reduction coefficients are also the same, This theorem can be quite useful for ex-
perimental determination of the reduction coefficients,

Utilizing simlilarity considerations, one can limit oneself, in order to simplify
further calculations, to considering a plate, which is divided by a rib network into
strips with the dimensions 2 ra/b and 2x; the nodulus of elasticity and the thick-
ness t of the plate will be assumed equal to unity.

Let the plate be under the action of loads compressing it in the longitudinal
and transverse directions, where the mean shearing stress in the plate is zero.
In that case it can be expected that the deflection will be symmetrical with respect
to the centers of the strips; therefore we give its approximate expression in the
form of an even periodic function of the coordinates:

M N
= 3 Y Anscoss (m— Dtcos (n— L)y, 4=t (29.15)

M=l ]

The coefficients A of this formula shall be de.ermined below from energy consi-
derations.

Obviously the expression (29.15) satisfies tl.e conditions for the absence of
deflection at the points of contact of the plate with the riba, Substituting it in the
right-hand member of the equation (29, 8), after simple trigonometric transforma-
tions, we obtain

28 N
AA@—'EO EODM cos m & cos nx, (29.16)
where Dnrm are second degree algebraic polynomiils in A
Dio = — (89/32) (A3, + 943, + 25A2, 424 | A1z + 240A.13),
Doy == — (83/4) (AuA1z + AuAn), Doy==— (9%%/32) (A%, + A1 An), (29.17)

Dy=—u (—}AuA:l + AuAy +%Au AL +ApAy, + AuAu).

D22 = — 81(AAn + 441240 + 441 Ary),
Dy = — (8%16) (AnAn + 9AnAn + 254; Az + 49A1244),
D= — (8/4)(An s, + 1640:An), Do = 0.

1686



From these formulas one also obtains the expressions for the quantities
o1 DZD’ cees D13, if in the formulas given one interchanges the indexes m and

n in the quantities Amn‘

D

The particular integral of equation (29.16) is given by the formula

2M N

D n ~
Q‘—EZ (mT:Lnﬂ)TCOS m¥ cos an. (29.18)

Ny g =)

The general solution ¢ of equation (29.16) is the sum of the particular integral
tl>l and the general solution ¢, of the homogenous equation

34D, =), (29.19)
ie.,
C=0, + @, (29.20)

Here, in order to simplify the problem, it is assumed that the plate iz displaced
relative to the ribs in a plane tangent to the plate, i,e., it can slide along them, but
cannot separate itself from them. The reduction coefficient thus obtained from the
plate will turn out to be somewhat lower, which will lead to a rise of the safety
factor of the structure. In view of the fact that the ribs do not transmit any tangent-
ial forces to the plate, the stress function will have no discontinuities in its second
derivatives which define the membrane forces in the plate.

The type of formula (28.18), representing (l)l as a function with continuous

derivatives, accords with our assumption. To determine the biharmonic function
¢, we shall temporarily make the assumption that the plate we are investigating

extends to infinity in all directions, and we shall require that the function ¢0 char-

acterizes stresses, whose values are bounded in the infinite plane. Here, the
second partial derivatives of that function with respect to ¢ and 7 should be
bounded at infinity and, therefore, the function a®, should also be bounded, which
i8 harmonic, ag it satisfies the Laplace equation: A(A®,)=0. But, as is well known
/VI1.9/, a harmonic function bounded everywhere can be only a constant, i, e.,

ad, ==const = C,
Hence follows that
2]
D,=C ‘5’ +%

where y is a harmonic function, Consequently, the function d%/d*is also harmoniec, ]
as

8.(0%/08%) = - (45) =O.

But %98 = 9*®,/d%* — C i8 a bounded function and, therefore, from the theorem
just mentioned J'%/d%* =const. Therefore, ¢'®,/%k? is also a constant.

In an analogous manner it can be shown that

0%, /97 = const, 9'®,/didn = const,



Hence it follows that @, is a second degree polyiomial in § and % in which the
linear terma can be set equal to zero, as they do not affect the values of the mem-
brane stresses. Thus,

Do = pa k2 — -+ py 2, (29.21)

where Pyr Py, T represent the values of the mear compression and shearing stresses.

If the plate has finite, but nevertheless sufficiently large dimensions, and is support-
ed on a considerable number of longitudinal and transverse ribs, then it can be
expected that for the majority of the plate strips, with the exception of those which
are close to its boundary, the stress function is sufficiently well represented by the
formulas (29.18), (29.20), and(28.21). To determine the deflection of the plate we shall
make use of the minimum total potential energy principle, accordingto which the equilib-
rium state of the plate is characterized by a minimum of the sum of elastic energy
of the plate and of the potential energy of the loads acting upon the plate:

I= 3d ot 3 — A =nmin. (29.22)

Here 3def1 is the elastic energy of the deflection of the plate, 3,is the elastic

energy of the membrane stresses, and A is the work of the external forces.

The work of the load compressing the plate along the axis x is

A
PIAJdYI:pl S‘ “l@iﬁd
o

>
1
|
I

-1 =)
The work of the shearing loads, applied to the tr:nsverse edges of the plate is

*a

b
[w'(f:h.)dn -~ \ (= —3)dy == ? \—~d€dv‘
-

o B

An analogous expression can be obtained for the viork of the shearing stresses, ap-
plied to the longitudinal edges of the plate.

The work of all the shearing loads is equal to:

/ dul dvi
g 4,4
i \glK a K

In our case, when E =1, t = 1, y=®, by making the use of formulas (29.11), we
find
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amaearns | (5% 1G]

a1
4 "
#e e 1w N[y Kaid (29.23)
+pl[ﬁ; vdvf 2(0')}] ‘[—(‘+') dédn+
dw  dw
+%. :]} didn

Further, from formulas (29.11) and (17.37), one can easily derive the expressions
. b\ PP P
~—IJ {(AD) +20 +')L<oto #327’*-1]”“"'

soen= 2 [ [(wr 20 —0[(52) 4 F2Yad

where in our case D = t/12(] - 7).

{29,24)

Using (29.20) and (29.21), and setting in what follows 1 = 0, the first of the
formulas (29.24) can be given in the form

Su= [ [lava+20- ')[ LT P2 -"1:']%—

otan . o8 om
—i—(pr!—p«)’—"(1+')PIP’+‘PITPZ)¢'X'I—
FDNY »
+')(Pl a, 4 —,')}h-a')-

Integrating by parts and using (29.18), it is not hard to show that

[
(i O T TR YR W Y
dkdy  9%an LY

X =k

]

by
F/aw, o, n=h ¢ /9% A b=b
= \( r._4)d5 - 1dn =0,
Noz  dtan A \ FrI A M
Y

and the last three terms of the expression for 3, are zero. Thus,

3 =%fﬂ<m,)r+(pl + paf —2(1 +9) prpa} dbddn. (29.25)

Analogously, the second of the formulas (29,24) can be simplified and brought into
the form:

Saei= % f f (Aw)? dEdn, {(29.26)

Introducing (29.15) and (29.18) in the expressions (29.23), (29.25), and (29.26), and
carrying out the integration, we shall obtain the following expression for the total
energy of the system:

M 2N
3"”" ZZ(m’!’+rﬂ)’
+iim[w+m)(m—§)’ o+ (29.27)

ma=] pesl

+©+p(n - %ﬂ —8(pi +pi— 2pp:l}.
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From condition (29.22) follow the equations:

03/0Amn =0

or

oM N
D3 . 0Ds;
(mR2 + 1t OAp.

amel A=l

+ {<D+p,)(m - %) 8 +(D+ p2) (n - %)Y}Am= 0, (29.28)

m=1,3,.., M)

n=1,3,.., N/}’
where D,; are quantities defined by (29.17). As that system of equations is non-
linear, several states of equilibrium can correspond to one and the same loading.

Among them, the stableness will be those for which, under arbitrary small
changes 3Aa. the inequality

0Amn0Am' s

mn min’

Z D) A At >0 (29.20)

is satisfied. In order that the quadratic form in tte left-hand member of the above
should be positive, it is sufficient, as is well known, that the principal minors of
its matrix be positive, The relations thus obtaine:! allow one to pick out from

the totality of all the solutions of the system (29.2¢) those which correspond to

the states of stable equilibrium,

Having determined Am , from {29,18), (29.21), and (29.20), we obtain P,
and then we calculate the reduction coefficient ¢ from (29,14),

Figure 15 gives the curves of the dependence of the reduction coefficient on
the magnitude of compression of the plate,

T T T T T
Graph of reduction ccefficients
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Figure 15

Here the values of ¢ are along the ordinate: and along the abscissae the
values of the compression parameters 4.3, replesenting the ratio of the mutual
approach of the plate edges 4, to the value of the shortening igqy of the
plate at the instant of stability loss.
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In conclusion we shall prove that in the case under consideration, the edges
of the plate remain straight after buckling.

In fact, from the third equation (29.11) we have, after differentiation with
respect to y

o qhw swly  ow
oyl Et dyay? Oy \ dx ay dxoy

dul _ 2004 %

Differentiating the second of the equations (29.11) with respect to x, we determine
from it the value of 9°v'/dxdy:

Lo 8% N\ dwl d

0xdy  Et \ox® axdy3 ay  oxdy

Introducing this expression in the preceding equation, we obtain

L T T (-t B o (29.30)

) Et dxdyr | Et\oxd  axdyr ax 3y

Introducing in this the formulas (29.15) and (29.18) we convince ourselves that

ol
a2

=0 for x=-+ (2N 1)ar/b.

This quantity is zero also at the values of x=+4%, corresponding to the

edges of the central strip of the plate, which testffies to the fact that they do not
twist.



§ 30. Determination of the Reduct:on Coefficient Under the
Combined Action of Compressive #nd Shearing Edge Loads

We sghall consider the problem of determir.ing the finite deflections of a plate,
supported by a large number of uniformly spaced longitudinal ribs and loaded at its
edges by shearing stresses t, a longitudinal stress Py» and a transverse stress Py-

To simplify the investigation we shall initially assume that the plate can freely slide
along the ribs, having no possibility of separating itself from them. This problem
was solved by Kromm and Marguerre /VIL 10/,

As experiments show, with the buckling of the plate due to the action of shear-
ing loads, diagonal waves appear on its surface (Figure 16),

Liiiiig
_..{/ /,’/’/’ //'._
] A A L
YR ACY. AP F &3
_.‘// /’/4/ ///7 { —
il AR 1/111/ t —

Figure 1¢

Taking that into account, the deflection of .he plate can be approximated by
the function

w=fcos Zcos = (x - my).
b ! ¥) (30.1)

Here b is the distance between neighboring ribs, 1 is the length of the segments
cut off by the wave crests on the axis of absciss~s, m is the cotangent of the
rise angle a of the waves with the abscissa axis. Introducing the expression
(30.1) in the compatibility equation (29.5), we shll obtain

AAG — - /"*"{ iry Mo }
& Etwncosb—iy—c:s‘(x my)}.

Analogously to the preceding we find the solution of this equation, which satisfies
the boundedness condition of the membrane strains in the infinite plane:

S LJ PG S I L LI
Y= Et32{pcosb 'bl(l-{—m’jtcosl(x my)}+ (30.2)



The stresses at the plate edges are defined by

=0 e —
Ty= ¥ i TeyTape cos (x — my) + ps,
Topem . b E'm
1 axdy  BbY(l + mi)t

cos{x—my)++.

Consequently, formula {30.2) represents the stress function for the case when plate
edge is under a set of uniformly distributed loads p,, T, and p,, and periodic
loads, represented by trigonometric functions. But the influence of the periodic
loads upon the state of strain of the plate decreases rapidly with distance from its
edge, and therefore formula (30.2) will be sufficiently accurate in the application
to the parts of the plate which are not too close to its edges, as also In the case
when the plate edges are only under the above-mentioned uniform loads.

By using formulas of the type (29.24) and (29.23), one can determine the
elongation energy of the plate and the work of the external loads; there it is con-
venient to first calculate the corresponding integrals along the surface of a single
buckle of the plate, and then to multiply the quantity obtained by the number of half-
waves in the buckled plate. Uncomplicated but somewhat lengthy calculations show
that the potential energy of the plate and its loads is given by the quantity

90t Suan- A= LiEB (T L5 - (g A g
+p.le%:'. i{lﬁ"" -
TS A (R B o

The accuracy of this formulas will be sufficient, if the number of buckling waves is
large, the plate is long, and once can roughly neglect the energy of those parts of
half-waves which are situated at the plate edges.

Here we introduced the notation
Bt = b* (1 + m)/ 2 (30.4)
The state of equilibrium of the plate is characterized by a stationary value of the

total energy of the plate and its loads; therefore we shall determine the values of
the parameters f, f, and m, characterizing the plate shape, from the relations

0(3-+ Fdef~ A)/a_/=01 d(\9~+3dgfl' A)/JB———”. (30 5)
0 (3u + Sgen— A)jdm = 0. ’

As can be seen from expression (30.3), these equations will contain the quantities
P, Py and t only in the first power. Solving them, we find the relations

—p=Ctop - m G+ + (30.6)
+Etag_1[ 2m’+9’+2mf]
166 B (1 4 my? ’
» " xift 1 2
—pr=Z (1 PO+ Et T TIZ?) (30, M
1
14~
-5 o _ E+7L2 __ﬂ_)}
T m[”‘(5+z§=+p) Etlw.(wu,)t (30.8)



Here we introduced the notation

Bt wr
=G (30.9)

To simplify the calculations we shall have ‘o confine ourselves to the conside-
ration of some special cases.

We shall first consider the case where trarsverse compression of the plate
is absent

p2=0. (30.10)
We shall start by clarifying the relationship betwz=en the longitudinal compression

and the shear at the instant of stability loss, To that end, we set f = 0 in the
formulas (30.6), (30.7), and (30.8). Then, using (30.10), we obtain from (30,7)

g=1.
Introducing this in (30.6) and (30.8), we obtain
— p1==p* —2p*m?, t=z==2mp*.
Determining the value m from the last equation and substituting it the preceding
equation, we obtain the equation for the stability boundary of the plate under a
simultaneous loading by shearing and longitudinal loads
—pip®=1—(/VIp*n (30.11)

By setting v = 0 in that formula, we obtain the ¢ -itical value of the compression stress
in the absence of shearing stresses

Pia= — p*.

In an analogous way, setting p; = 0 in formula (30.11), we determine the critical
value of the shearing stress in the absence of compression

(30.12)

£t Twp
ﬂ:=V—2-p‘—l_v, * K3b’ .

This value differs by roughly 6.5% from the exact value of the critical shearing
stress of an infinitely long strip.

Introducing (30,12) in (30.11), we obtain the approximate formulas
2i/pia=1—(vn)"
We return to the general case of finite deflections of a plate. According to formulas
(29.12) it is easy to compute the mutual approach A; of the transverse edges of the
plate (where in that formulas one should extend tt e limits of integration along one
half-wavelength of the buckling, and multiply the result by the number of half-wave
L] ll):

Ay m= Ly [(— p1 4-vpa)/ Et - s3FY8E). (30.13)

In an analogous way one computes the transverse contraction A, of the plate
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Ay=Ly {(— P4 v YEL + ‘i’af;’ [(-%)’-}- m'l} , (30,14)
where L , is the plate width,

Assuming that the ribs undergo a contraction, equal to the mutual approach
A, of the plate edges, it is easy to determine the stress appearing in the ribs:

—a=E(Av/L) = :ﬂ:‘_"l + En3f 382, (30.15)

We shall now compute the shear along the plate contour. For this we note that
the shear angle of the projection of a small rectangular element of the plate on the
plane of the plate contour is

dul , dvl

2."-‘3} FriR

This quantity is different for different points of the plate. To characterize the shear

angle for the plate as a whole we shall compute the mean value of the shear of its
elements along the plate surface:

-t G+ 3]s

where S is the plate area.

If one makes use of the relation connecting the stresses and the deformation
of the plate

1 149 L
ou=][dul+£+al-ol}=—————“+')r'“=-‘( +9 -—-’1'

2 5_;- dx dy Et 7 axdy

then the value of the mean shear of the projection of the plate elements can be re-
presented by the formula

- _ 24y N dw w
T ff[ £t axdy  ox ay]d"dy/s'

Introducing in this formula the expressions (30.1) and (30.2), we shall obtain

mn3f3 (30.16)

2(14v)
e )

Taking into account the fact that in our case p; = 0, we obtain from equation (30.7)
a formula for the determination of f:

Wf’_ * " 2
_ﬁ.—.—_";(a — 1)1 4+ mop. (30.17)

Introducing (30.17) in (30.8), we obtain an expression for m in terms of t and f:
- P—. 2 l
m :/4[G+9+P]_ (30.18)

The preceding relations allow one to construct, for a given value of shearing load,
graphs of the dependence of the values of pi=to and f on the value of the mean
longitudinal stress p, in the plate. For this one has to take a series of values of
the parameter B and, by means of the formula (30.18), compute the corresponding
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values of the quantity m. Having substituted the values obtained in formula (30.17),
it is easy to calculate the corresponding values cf f, which can be used directly to
compute with the help of the (30,6) and (30.15) the: corresponding values of p_ and
@;. According to (30.16) one can determine the shear angle of the plate contour
and consequently also the effective shear modulus of the plate:

Gy = /1.

We shall now show how one solves the problem for the case when the longitudinal
edges of the plate are so clamped, that the distance between them cannot change.
In that case the quantity p, will be determined by means of the formula (30.14),
from the condition that 4, is zero:

» 22
P=='p|+EtFP(l + ’-"7 .
Introducing this expression in (30.7) and taking account of (30.4), we shall obtain
the equation

. o PR L S U I
R R R L e e Tl ks (30.19)

Thus, we have the system of equations (30.6), (30.19), and (30.8).

Also in that case for a fixed value of t one can, by taking a series of values
of fi, construct curves of the dependence of the quantities P,, p,, andf. For
this one must first eliminate the quantities p, and f2 from the indicated system of
equations, which is not hard to do, as they enter in the equations linearly, and then

L0
1 df STy
cay o e
[7 4
NN
04 A
B
0 / 2 3 4 T 5
70
Figure 17

to solve the equation obtained for m for a series «f values of . Inasfar as the latter
turns out to be complicated, it can be solved only approximately, for example, by
graphical methods.

In Figure 17 are shown the dependence curves of the effective tangential shear

modulus 1.2 for the value «<*, where v*=Vip*  The upper curve relates to

the case when there are ribs which hinder the muiual approach of the transverse, as
well as the longitudinal edges of the plates:

Ay =4; =0,

Here it is assumed that the ribs do not hinder the shear in the plate contour,
Below it are situated analogous curves for the cases 1) when the ribs hinder the
mutual approaching of only the longitudinal edges »f the plate; 4,=0, pi=0;

2) when the links hinder the mutual approach of the transverse edges only;

4, =0, p2=0; 3) for the case when both pairs of outside edges can freely approach
each other; p =p =0,
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' § 31, Determination of Large Deflections of
a Plate of Finite Dimensions

The solution, obtained in Section 28, of the problem of the deflections of an
infinitely large plate supported on a network of rigid ribs along which the plate can
glide, will be applied to the solution of some problems of large deflections of plates
of finite dimensions. For this we shall turn our attention to the central strip of
such a plate, whose edges are defined by the coordinates

E=4n/8, p=-tmn

As has been noted above, after the deformation, the edges of that strip remain
straight. Besides, by using (29.18), it is easy to show that at the strip edges the
shearing stresses are zero.

Thus, the solution found by us for the infinite plate represents the deflections
of a finite plate of length 2=/ and width 2=, under the action of such loadings upon
its edges that the following conditions are satisfied:

1) at the edges the deflections and the bending moments are zero;
2) at the edges the shearing stresses are zero;
3) the plate edges remain straight after bending.

Further, we shall consider the problem of Section 29 in a changed form, namely,
we shall assume a rigid clamping of the plate to the longitudinal ribs. There, for
simplicity, we consider that the plate can, just as before, slide freely along the ribs,
but cannot separate from them. We shall further agsume that the ribs are absolute-
ly rigid with respect to flexure in the plane perpendicular to the plate, and their
torsional rigidity is very small. The solution of this problem was given by
G.G. Rostovtsev /VIL.7/. At the strip boundaries, in our case, the following
conditions are satisfied:

w=0 for {===x/b and for n="*x, (31.1)
It is natural to assume that the deflection is antisymmetrical with respect to the
ribs and that therefore the ribs remain straight after the deformation, From sym-

metry considerations one can conclude that the deforming membrane stresses near
the transverse ribs are zero:

Tu= 7%’=o for §=- =3, (31.2)

The condition that the curvature of the strip edges after the deformation be zero
is the following:

ol
2

=0 for §=-wx/d. (31.3)
Taking into consideration the relations (29.30) we shall obtain

(2+»)5:%+%"-;+‘%.g—0 for £ =+ *A. (31.4)
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In an analogous way one can obtain the linearity condition for the longitudinal edges
of the strip:

24 B 2O, dw S -
(‘+')as:o,.+o,.=+oﬂ 5o =0 for n=tx (31.5)

Thus, the solution of the problem reduces to the determination, under the boundary
conditions indicated above, of the deflections of one strip clamped to two longitudi- -
nal ribs with cross-sectional area F*, equal to half the cross-sectional area of the
ribs supporting the plate, since each rib of the plate simulatenously supports two
neighboring strips.

We shall consider a strip of length a, width b, and thickness t, bordered by two
stringers of area F*. As the longitudinal ribs are rigidly clamped to the strip
edges, their extensions «_ and the extensions of the strip edges adjoining them
should be the same:

=1 =$ 3’7{-;—’9 for y= = b2, (31.6)

The stress in the stringer P, (x) varies along its length as a result of the action
of the plate upon it according to the following law:

Py (x)=Pa w)+fr

, %= Pu(0) -

y= b

‘J'%ly-—nlzdx

Here P (0) is the stress in the longitudin:l rib at the point x = 0, Utilizing
this, we can write formula (31.6) in the following form:

(31.7)

0X0y |y = — »j2

""e%'[P"(O’“Ef o d‘]- (31.8)

LG B
E\ayr T an

yo—- 2

In particular, setting x = 0, we have

pﬂw:("‘""- AN E (31.9)

v dxt) ¢

a0y — 42

Differentiating (31.8) with respect to x, we find

R T A L -
EF " dxdy Et( Oxdvt Y 5.(3) for y b/2. (31.10)

Carrying out the change of variables (29.7), we easily obtain

x

Pa (B) = Py (0) — f ? % ;»T; dx,

[
—Er (DY R (P DO
Pn(O)—Et(h)F (M 2.
bt 0% 0’0 NP

T omFr g Moy g OFNEoT

(31.11)

For a plate with the dimensions a =2n/8, #=2r and thickness t = 1, clamped to ribs
of cross-sectional area F, the preceding formula has the form
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1 P P 20
Flan T e for n=—=x, (31.12)
Comparing this equation with the preceding, it is easy to notice that the problem of
determining the deflections of a strip with dimensions a and b, clamped to ribs of
area F*, reduces directly to the similar problem for a plate with dimensions 2= -
and 2=, clamped to ribs with cross-sectional area F, defined by the relations

bt
=F*’

M-

We turn to the consideration of a strip with the dimensions
a=2x/8, b=2x, t=1 E=1I (31.13)

In that case, x=¢§ n=y, ®=9.

Analogously to the above, one derives the boundary condition which has to be
gatisfied near the second stringer:
1 e 3¢ b

F'Jﬁz——oxay—vh—' for g =rm. (31.14)

As before, we shall look for an approximation to the deflection function in the
form (29.15).

We shall take the expression (29.18) as the particular integral @, of the
compatibility equation (29.16).

The solution of the compatibility equation satisfying the boundary conditions
will be looked for in the form (29.20) where v, is the solution of the homogenous
equation (29,19):

m
%=me(y)cosmsx+bzi’+”—;ﬁ. , (31.15)
MmO i
Introducing this expression in the left-hand member of equation (29.19) and equating

the coefficients of cosmix to zero, we shall obtain the equations which must be sat-
isfied by the functions f:

(md)t fo () — 2mtp D2 4 om0, m =1, 2, (31.16)

In view of the symmetry of the deformations, w is an even function. It is natural
to expect that the membrane stresses T, and T,, and consequently also the strain

functions will be even functions of the coordinates. We shall therefore consider only.
the even solutions of the equation (31,16):

fn(¥)=Cinch(m8y) 4+ Crmy sh (mdy). (31.17)

Taking into consideration (29.20), (31.15), and (29.18), we shall obtain



2M AN

D, .
¢ = —_—
gy cosmix cosny-+
==

(31.18)

M
-+ E €os m3x|Cinch (mBy) + Caum y sh (méy)| 4

mwi
P Dt
+‘L2—’_+_2L.

Introducing the expressions (29.15) and (31.18) in the boundary conditions (31.5), we
shall obtain the equation in which it is necessary that the coefficients of

cosmdx (m==1,2,..,2M) be equal to zero in order that it be satisfied for all values
of x.

— Cin (MY (1 4 v)shmix — Cea[(m3}in(14v)chmén —
—(m3P(1 —v)shmbx] a0 (m=1,.., 2M). (31.19)

One more equation for the coefficients is obtained {f one introduces (31.18) in the
equation (31.14) and equates the coefficients of the functions sinméx in the
expressions obtained

2N

€ Dpy min (—1)*H1 . _
F [Z —-——(ml’-}- o Cim (mi) sh mén

— Cim (m8sh mdx + m%2x ch mBn)]— (31.20)

= — Cimam¥? (1 4 v) ch mdr 4 Cum |~ (#:8p3 (1 +v)xshmix —
—(m8-2chmbx] (m=1,2,. , 2M).

Solving the system of equations (31,19) and (31.20) with respect to the two unknowns
C,. andC, , G.G. Rostovtsev obtained explicit expressions for these quantities
in terms of the deflection parameters A . and the quantities p, and P,

In order to clarify the physical meaning of the quantity p_ entering in equation
(31.18) we shall compute the mean value of the stresses T2. acting per unit cross-
section of the strip, parallel to the x axis:

(8 Pl
1 1 e
r,,=h—ﬂj.'r,dx-m_[wu_p,. (31.21)
il —=
Thus, p, represents the mean value of the st -ess T,. It is the same for all
the cross-sections parallel to the x axis. In an an: logous way one calculates the
mean value of the stress T, acting per unit length of the cross-section parallel
to the y axis:

x) oy
2M
=p,+ Z cos mix [Cim-2m3 ch m¥x 4
o |

+ Cam(2sh mx -+ 2mdx ch - 8n)),

Hence it follows that the mean stress in the cross-:ection depends on its position,
This is natural, since a part of the longitudinal loac is taken by the longitudinal ribs,
and that fraction varies for different points of the r:b, Setting x==¢ in the pre-
ceding formula, we shall find an expression for the quantity p in terms of T ,:
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M
"
=T —_ — 1™{Cim- 3
2 .¢|'__u Z( 1) [Cim- 2m3 ch mdx -+ (31.22)
1

4 Cim (2 sh mér + 2mé=-ch m3x)|.

The preceding formulas allow one to express all the quantities, defining the strained
state of the strip, in terms of the deflection parameters Amu and the quantities p,
and p,.

The formulas (31.11) allow one to calculate the stresses in the longitudinal
ribs and the elastic energy eccumulated in them:

= (L p 31.23
R fZEF P (x) dx. ( )

One determines the mutual approaches 4, and 4. of the transverse and longitudin-
al edges of the strips from equations similar to (29.12), after which one determines
the work of the stresses p, and p, , acting on the longitudinal and transverse edges
of the plate:

W=‘p1A1kP:Az- (31-24)

In view of the fact that the calculations are elementary and the results obtained are
cumbersome, we shall not give them here. The results of actual calculations by
the Bubnov-Galerkin method are given in the article /VIL.7/. Further, applying
the energy method one can derive a system of equations for the determination of
strip deflection under given loads applied to its edges. The parameter p, is equal
to the magnitude of the transverse loads divided by the strip length, and is there-
fore a known quantity. The values of A . and p, can be determined from the
minimality condition of the sum of the elastic energy of the strips, ribs, and the
potential energy of the loads. This latter, up to a constant, is equal to the work
of the external loads, taken with opposite sign, and therefore the parameters A
and p, can be determined from the system of non-linear equations:

3@+ —W) _ g 233 W) _g (31.25)
0Ama ! ap, :

Here, to a stable equilibrium state correspond those solutions for which the deter-
minants and the principal minors of the matrix of the second derivatives of the
quantity (3 + I — W) with respect to A and p, are positive,

In some problems of practical importance, instead of the value of the trans-
verse load on the plate p,, the magnitude of the mutual approach of the strip edges
A, 1is given. Such a case is encountered, for example, when the longitudinal ribs
are very rigid with respect to flexure in the plane of the plates and are clamped to
the transverse ribs, preventing their mutual approach. In that case 3.7 0.

The solution of such a problem reduces again to the solution of the system of
equations (31.25), to which is added one more equation

A, =0, (31.26)
connecting the quantities p;, pz , and Ann -
In article /VIL.7/ are given the results of the calculation of strip deflections in

the first approximation, obtained on the assumption that in the expansion (29. 15)
M=N=1,
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There, computations have shown that the mean stresses in the strip T | _(x)
are almost the same along its whole length: the deviation of the quantity T 1c&)
from its maximum value in all cases does not exceed 6%. Therefore, in the case
of a strip rigidly clamped to the longitudinal ribs, it makes sense to introduce the
concept of the reduction coefficient

v =T (x)pu,

where p . is the magnitude of that strain which would appear in the plate in the
absence of buckling. Here, other conditions being the same, the reduction coeffi-
clents in plates with longitudinal edges which slip along the ribs and in plates with
edges clamped to the longitudinal ribs, turn out to be almost identical. The solution
of the problem of determining the deflections of a strip clamped to the longitudinal
ribs was published in paper /VIL.7/ for the case when the strip is clamped to the
longitudinal and the transverse ribs. In order to catisfy the boundary conditions

in that case one has to add to the solution of the compatibility equation (29,8), taken
in the form (31.18), other terms of the form

w
Y cos ay|dinch ne 4 donx sh nx| =0, (31.27)

n=i

where
AlDy =,

In order to determine the constants ¢
ing conditions:

tm ++++» Gy, 'me has to make use of the follow-

1. the linearity condition of the longitudinal =dges of the stripa, character-
ized by the equations (31.19), and the analogous linearity condition for the trans-
verge edges, obtained from (31.19) by replacing the quantities (m 3 ), €y, » and
Cam by the quantities n, dln , and dZn;

2. the condition of clamping the plate to the longitudinal ribs of the form
(31.12) and analogous conditions for the transverse ribs. Here it turns out that

with the help of a finite number of parameters ¢ m -+ 4y it is impossible to
arrive at satisfying these conditions at all points of the strip edge. Therefore,
F.F. Rostovtsev proposed to determine the quantit:es Cym +++., dy from the con-

dition that the expression

«5
»o L _ _
j (axny‘ -5 +F EWE')L__“C()smM =0 (m=1,..,2M)

—~uid

be zero, and from analogous equations for the transverse edges of the strip, After
introducing the expression (31.18) in these formulas and integrating, one obtains
linear equations for the quantities Cim ++++» dy,. All the preceding conditions
glve a system of equations whose solution allows on= to express the quantities
L d211 , and consequently also the stress fun:tion ¢ in terms of the para-
meters A, p,, and p,.

The further solution of the problem can be ca:ried out by the method indicated
in the preceding paragraph,.

In Figure 18 are given curves of the deflectiors of the longitudinal axis of
symmetry of a aquare pluralumin plate (of dimensions 40X 40 X 0,05 cm), freely
supported at the edges and subject to a transverse pressure q. The plate was sup-
ported in such a way that its longitudinal edges could not approach each other: the
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tangential stresses at these edges were zero. The transverse edges of the plate
were rigidly clamped to the transverse duralumin ribs of 2.05 cm2 cross-section,
The solid lines represent the theoretical data, obtained by solving the problem in
the first approximation. The dash-and-dot lines represent the theoretical solutions
of the problem in the second approximation, when the deflection function was sought
in the form

w* X ¥ 3x ¥
— =w=Ancos—cos =+ A <= cos =
; 1:::52 2+ |zc032c 2—}-

3y
Az cos = cos 2L,
+ Axn 3 o

The dashed lines represent experimental data,

experiment g-a0s

o8 ==——= theoretical curves
w - —~- experimental curves
Figure 18
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R Figure 19

In Figure 19 are given the deflections of the same plate which, besides the
transverse pressure q, is also under either a longitudinal compression P = —357 kg
or a longitudinal tensile stress with a value of P = 357 kg*. In the paper /VILT7/
the problem of determining the deflections of a strip has also been solved, for the
case where before the start of the loading the strip had an initial bending sufficiently
well described by the function

M N

w“=22AoMcosa(m—%)Ecos (n——;-)n. (31.28)

Ml gl

* These graphs were taken from the work of G. G. Rostovtsev /VIL 7/,
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It should be noted that the initial bending, expressed by this function, has certain
specific properties:

1. the initial bending is zero at the strip edges;
2. at the strip edges the curvatures of the initial bending are zero.

The equation of compatibility of deformations in the presence of an initial bending
has, according to (26.11), the form
d2 2 dl 02
AP = {[—“ (w+ 7%)] — 5 @+ wo)-}?(wﬁ-'wo)] -

309
_ "’“’Q)’_% Clwg]
Qk0n g 9 _l'

(31.29)

where w ==w! /t, wg = w° /¢,

Here the change of the stress function during the deflection of the plate
has been denoted by t ®,. If by t O, one denotes the value of the stress function
characterizing the initial membrane stresses, then the stress function after the
deflection of the plate will be

b =D, 4Oy, (31.30)

Since the plate has zero deflection at the edges, ‘he equation (3 1.4), characterizing
the linearity of the strip edges, is also entirely --alid at the edges of the plate. It
is easy to convince oneself that the conditions of clamping the plate to the ribs
(31.11) also remain the same.

As equation (31.29) is linear in &, and the boundary conditions of linearity of
the strip edges and the conditions of clamping of the strips to the ribs are homo-
geneous, the solution of the equation may be written in the form

O =0/ — /",

where ©,’ and ®,” are solutions of the equations

, 2 I I o
AD, =[0Zo“ (w +“wo)] —ml? w,) e (@ + w,),
A:zp”-(‘”“"o 2wy dump
TN otd R

satisfying the above-mentioned homogeneous conditions.

The solutions of these equations are similsr to the solution of the correspond-
ing equation for an absolutely flat strip; they ar: obtained from it by the simple
replacement of the quantity A _ by the quantities (A +A,, )and Ay .

The further course of solving the problem is the same as that of solving the
problem of the flat plate, We ghall not dwell here on the determination of the de-
flection of a plate, whose middle part is support:d by flexible ribs, or on considera-
tion of the case when the plate edges are not loaced., These questions are elucidated
in the works /VIL.7/ and /VILB/.
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Chapter VIII

SOME METHODS FOR THE SOLUTION OF PROBLEMS IN THE
THEORY OF BENDING OF CIRCULAR PLATES

§ 32. Fundamental Relations of the Theory of Symmetrical Deformation
of Slightly Bent Circular Plates. Application of the Method of Power Series

We sghall specify the position of a point on the middle surface of a circular
plate ¢ by polar coordinates r and f, where the origin is the center of the plate.
Let the plate in the general case have an initial bending w°, symmetrical about the
center, of the order of the plate thickness t. The length of a line element of ¢
before the deformation is given by

ds® = drt + r3dt,

Comparing that expression with (25, 4) we see that in the given case one should set
the following in the formula of § 25:

amr, B=6, B=-r, (32. 1)

where the reference surface is a plane, i.e., k; = k; = 0, We shall assume that
the stress applied to the plate and the boundary conditions are symmetrical with

respect to the center of the plate. Then all the quantities defining the deformed

and the stressed state of the plate will depend only on the coordinate r,

Our statement will hold if the stress in the plate is not very great; in the
opposite case, under certain conditions an unsymmetrical buckling of the plate edge
can appear /VIIIL 9/,

According to (25. 32) we have expressions for the radial stress T, and the
annular stress T ; in terms of the atress function y:

=% 1= (32.2)
dr

? dr3 °
Here, by virtue of symmetry, the shearing stress le is zero. According to (25, 9)

the changes in curvature are

d¥w 1 dw
=T a— L (32.3)

The initial curvatures of the plate can be calculated from the preceding formulas
by replacing w by w® in them:

.‘ir".z°=. (32. 4)

According to (32, 1) and (25. 13), the Laplacian operator has the form

a(y=L.4], ‘;ir(‘..)]. (32. 5)
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The equation of equilibrium (25, 12) can, by using (32. 2)-(32.5), be written in the

form
i b )
— [t r
(32.6
LA 2y twny)—p=0 )
rodrl odr  dr 1 i )
where P = --p >0, if the transverse stress is oriented in the positive direction of
the bending.

The compatibility condition (25. 33) reduces to the equation

R LR o [ G k2 (32.1)

According to {25.10) the radial bending moment and the circumferential elongation
are defined by the formulas

—_pf{¥e oy deN -
M= dr? + 2 dr /' ? ¥ 34 (rz VTI) (32.8)
¥y d_*)
Et \ dr? roarl

On the other hand, according to {25.8), ¢,= u/r where u is the radial component
of displacement. Consequently,

—r (P _ W
“ ﬂ(dr’ r A~)' (32.9)

When the plate edge r = a is rigidly clamped, then the boundary conditions

0 y—0=% _ 1 4 -
w=0 “uo—dr’ r  ar for r=2a. (32.10)

should hold. When the plate edge can displace itself freely in the radial direction

and an outside radial stress pj is applied to it, the boundary condition for the func-
tion y has the form

Ty=p; or %-%:pl for r=a.

(32.11)
Introducing the dimensionless quantities
w. =wit, W=, 1=, (32.12)
b =Y/E8, ’ (32.13)
and also the notations
"""%=E+-r ’:%' "‘_%"‘31""=Tz}h' (32.14)

we write the equations (32, 8), (32.7) as follows:



3bild v

) . (32.15)
—+ Flene+ el + =0,
i d df1 d
5 Tp{P Z[T . 4_9(?21’")}|+
+_;..—:;-.diplp’(q’+29q°)]=0. (32.16)

By studying these relations, the reader can convince himself of the fact that
the similarity theorems, formulated in § 29 for a rectangular plate, hold also in the
case of circular plates having the same initial relative deflections w,~ and the same
Poisson's ratio v. By taking this into account, one could, in what follows, limit
oneself to the investigation of plates of unit radius, unit thickness, and unit modu-
lus of elasticity of the material.

Multiplying (32,15) by ¢ and integrating, and then dividing by ¢, we shall
obtain

PR U R Y B o
"4,[9 dp(pv)] Pulg+a%e +
iy (32.17)

~\ra, S,
+ 5E‘s>dp+p 0.

¢
o

In order that the second derivatives of q with respect to ¢, characterizing the shear-
ing stresses, be bounded for ¢= 0, the constant of integration c, has to be set equal
to zero. Making use of the identity

d [ d 5\ 1 dg d2q 1 d dg
A4fl 4 =Llgdy Lo _ 1 4d/.4
&5 [9 PR e ("‘ P >'

we bring the equation (32, 17) to the form

4 (e 49\ _ 0 L ‘_& _ i
s (pz dp) P (g +4%+ 7 5 o pdp=0. (32.18)
]

By carrying out analogous transformations, from equation (32,16) we shall obtain

Lo radpa N L L2 9000y = 0.
¢ de(P d?>+2(q+ 9% (32,19)

We shall consider a plate which is under the action of a compressive edge stress
{T1< 0) in the plane of the plate contour.

On the plate contour the condition (32.11) should be satisfied. Besides, the
bending and the bending moment should be zero, Taking into account (32, 8) and

the notations (32, 12) and (32. 14), the last of the boundary conditions may be written
in the form .

d
E‘;7_.{,_(1.*.\,)q=0 for pw=1l, (32,20)

As p1x and q, by virtue of symmetry, have to be even functions of Cartesian coor-
dinates x, y, then
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dr = dx "dr+ dy  or =0 for r=0

Consequently,

dpy, __ dq __ =
= dr_o for r=20. {32,21)

Friedrichs and Stoker proposed /VIIL.6/ the following method of solving the problem
under consideration in the case when w0 = 0 and p = 0.

Let
p=2a/A (0L A),
Pru= A%, g == Atnk, (32.22)

where A is still an arbitrary number.

Then the equations (32.18) and (32,19) and the conditions (32,20}, (32,21), im-
posed upon the function q, take the forms

1 4 di 1 d dx 1,
R G R Ui L (32.23)
dk
AI+“+V)h=0 fo o= A (32,24)
dk d
d_’.zf=o for a=0. (32.25)

We shall seek the solution of the problem in the form of power series, satisfying
the conditions (32.25), setting

= 2 e, k= E ks,

) s=0

(32,26)

Here the equations (32,23) are satisfied, if the c efficients of the power series are
connected by the relations

25 (25 +2) ks= Y, Tmka,

mynems- 1 (32.27)
2@+ R == 1 Y Ankn
mtriemg -1 (32°28)

We take any values of the quantities =, and &, and determine the following coeffi-
clents of the series according to (32.27), (32.28, Introducing (32. 26) in (32. 24),
we obtain the equation

¥ (254 1+ ) kA¥ = 0.

gl

(32.29)

Solving this equation by one of the approximate riethods, we determine the para-
meter A, which had remained free so far. Thereupon we determine the radial
stress at the plate edge according to (32. 26) and (32.22). Thus, taking various
values of kg, one can find solutions correspondirg to different values of the para-
meter of edge stress,

In article /VIIL7/ it has been shown that if it is desired to obtain a solution
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of the problem, which, under decrease in stress, transforms continuously into the
solution corresponding to the smallest of the critical stresses, then for A one has
to choose the smallest positive root of the equation (32. 29).

The method described above can be applied almost without change to the cal-
culation for a plate elastically fixed at the edges. Bodner /VIIL 7/ has carried out
the corresponding calculations for a plate clamped at the edges. The results of the
calculations have shown that under large compressive stresses along the edges, a
region of positive membrane stresses appears inside the plate where the plate is
under tension,

pinched
plate

5
a freely supported

u
\ plate
s \
5, o

-a5 Y

-0

Figure 20
Figure 20 shows the dependence of the ratio of the radial stress at the center

to the edge stress, and of the ratlo of the compressive stress at the edge to the
first critical value of that stress.
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§ 33. The Method of Successive Approximations and
the Method of Small Parameters

In many cases in the solution of problems of deflection of a circular plate it
is convenient to use the substitutions

W= { W =0, y ‘izf_t'S,

r a (33. 1)
P =pa‘(l —/Er, (=1 — r/a?.

After a single integration of the equations (32, 6) and (32. 7), carrying out the substi-
tutions (33. 1), and assuming that p = const., we obtain the equations of equilibrium
for the plate in the following form

BAlra_pn®]=3n—ws{ &\ _3;
dv[(l R azJ sa ')S(dz ta) e (33.2)
a2 R
w1 =OSt=L (v (33.3)
where we introduced the differential operator notation
o) = — L{ (TN L g% e (33.4)
L@ 2[(« +2Z 4:.]'

Now, when the plate is clamped at the contour, the deflection should satisfy the
conditions

vm0, do/dilm0 at {=0. (33.5)
In the case when the plate edges are clamped so tiat they cannot displace themselves
in the plane of the contour, the boundary conditiors (32, 10) hold for the function S
which, with the notations (33. 1), are brought into the form
2dS/dl — (1 —v)S=0 at {=mQ. (33.6)

When the plate edges, while fulfilling the conditions (33. 5), can slide freely, the
static boundary condition

S=35 at L==0, (33.7)
should hold, where S, is the given value on the ccatour of the quantity S. Besides,
one has to set up the boundedness condition of the quantities dv/d{ and S at the cen-

ter of the plate, i.e., for {= 1. Integrating equation (33. 3) twice with respect to
{, we obtain an expression for S

S(i--0)= ' L(v)ydzde+ ¢, + €,
I

where c; and c; are constants, determined from "he boundary condition (33. 6) or
(83. 7) and from the boundedness condition for S a- { = 1, where, according to the

Dirichlet formula . .
ffL('u)dzdr .ef(: — )i (v)d.
o0 0

190



For the case when the plate edges can slide, we find from (33. 7) that
S=c1="5.

From the boundedness condition for S at ¢ = 1 it follows that

1
o-=f(1 )L (@) dt -+t e

Determining ¢, and ¢, from the two preceding equations and introducing them in the
expression for S, we obtain, with the help of the Dirichlet formula

s=1—1~[f(c~:)uv)d= —~:f(1~-f)L(v)df]+5~ (33.8)

0
Whence, substituting for S in the equation (33. 2), we obtain an integro-differential

equation which has to be satisfied by the function v. In the absence of initial deflec-
tions it has the form

alaag]=sa '“’)”f,—“:{é[:f’(x (Y _d -
—f(c O e e T

We shall investigate the solution of this equation by the method of successive approx-
imations. As the first approximation v; we shall take the solution of the equation

£l - 3 (33. 10)
at‘—'[(l Qd:]— 4P’

(33.9)

satisfying the boundary conditions
dv du,
0) = (%2 = av
w0 (d: )(-n O b

# o, (33.11)

We easily find that

3
=P (33. 12)

If one substitutes this expression for v in (33. 9), then the difference between the
right- and left-hand members of that equation will be the quantity A, of the neglec-
ted compononent, Figuratively speaking, one can say that the error of the first
approximation is brought about by the unbalanced state of A;:

dC
- J(c —9 (%);d‘] 2(114) +S°}'

To determine the correction 8,to the first approximation we shall find the supple-
mentary deflection required by the unbalanced state of A;. Here, in order to avoid
the necessity of solving a non-linear equation, we shall neglect the influence of
membrane stresses and determine §,from an equation analogous to (33. 10)

A,=3(1—"’%{[cofl(l_t) (&) (33.13)
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L _o%la
«'[“ Qa] & (33. 14)

with the boundary conditions

(d%/ @m0 = O, i ‘2;‘: ' < co.

Com |

Introducing (33. 12) in (33, 13) we obtain the second approximation from equation
(33. 14) by a subsequent integration

V=i b= P{%U — B0 Diger )

VI =WP ron o1, : 1,
T Tew (DK +3 CRR R A ‘9)}'

(33.15)

To obtain the correction to the second approximation one has to calculate the
change A;of the right-hand member of the equation (33, 9) which will occur if, in-
stead of v = v, one substitutes v = v, and then solves the simple linear equation

o ] _a 33. 186)
dt‘[“ c)a] * {

Here the third approximation will be given by the formula v; = v+ 85, etc.

The successive approximations obtained in ‘his way will converge, provided
the magnitude of the stress upon the plate is not large. In that case, the membrane
stresses are also not large, and the first correction is smaller than the maximum
of the first approximation, the second correction is smaller than the maximum of
the second approximation, etc. The proof of this can be found in the work /VIIL 1/,

We shall now consider the application of the method of small parameters-—-ex-
pansion of the deflection into a power series of a parameter of pressure.

v =21.(L)P-. (33.17)

As the first approximation to the required solutior, i. e, , as the coefficlent 7, one
takes the solution of our problem according to the theory of small deflections of
plates. The following coefficients of the series are determined subsequently,

We shall assume that in this way we have ob.ained an approximate expression

11:27:(()P". (33, 18)

=]

To determine the (n + 1)th member of the series (33, 17) we shall introduce (33.18)
in the left-hand side of (33.9) and, after raising to the power and multiplying, we
shall separate on the right-hand side all members containing P to a power higher
than (n + 1). Solving the equation obtained for v, we shall find a more exact approx-
imation for v and at the same time, the value of th: function Yar1(3).

Hence it is apparent that the method of the s1aall parameter can be considered
as a variation of the method of successive approxim tions, in the application of which

192



the higher powers of the quantity P, considered as a small parameter, are neglected.
Without dwelling on the details of the given variant—method of a small parameter,

we shall only show that with S, 0, in the first approximation the problem leads to
the integration of a Bessel equation, and in subsequent approximations to the inte-
gration of expressions containing Bessel functions.

In what follows we set S, = 0 and go on to the exposition of a second variant of
the method of a small parameter, proposed by Wei-Tsang Chien in /VIIL 14/,

Let v. = v(1) be the deflection of the center of the plate. We shall expand the

deflection function and the pressure parameter P in series of powers of v., consid-
ered as a small parameter

'U((): v () ve -+ (vl + ..., P=Puv.+ Pt 4 ... (33.19)
Introducing these expressions in equation (33, 9) and equating the expressions on the

right- and the left-hand sides containing the parameter v to the same power, we
shall obtain the sequence of equations

2 u - m”"']= 4~P,,

(33. 20)
42 N S R ﬂl;:’) du, do,°2
av‘“ R }~ ST [ r“ q(a’-
_ du\2 3
f‘“ ( .d'j 4P,,..._
(33.21)
The value of the function v at the center of the plate should be v:
v(D=vi(D)ve+v2(l)vt+ .. =
Hence it follows that
vi(l)=1, (1) =0, (1) =0, ... . (33.22)
The boundary conditions for the plate edge have the form
s (33.23)
90, P =0 for (=0,
% 4 dl

By solving equation (33. 20} for the conditions v, (0) = (dvi/d)e =0, Jo (1)) <oa, we
obtain

o {§) = l—: P

Hence, in view of (33, 22), we obtain
= 16/3, v, ()=

Introducing this expression of v; we obtain the solution of equation (33. 21) satisfy-
ing the conditions v:(0)={(dva/d)e = 0,[ e (1)| < o0t

_3pp_1=" 1 L 1
b0 =2 P - (5(*+33('+220+t’+3c°),
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From (33. 22) we obtain P,=| %(1 —+). Consequently,
m(t)=[3%cz - slo(scz+3-;-c=+2%c' +% +%c')](1 V),

In /VIIL 3/ are given the calculated results for de’lections and stresses in circular
plates for various boundary conditions at the plate edges; in particular, one con-
siders the question of the deflection of a plate with an elastically supported edge for
various rigiditles of fixing the edge, where the dependence of the deflection of the
center of the plate on its stress is given by the formula*

P=?|ﬂ’;+@:w;3+,- . (33. 24)

The values of the coefficients f; and f,for various conditions of clamping the plate
edges for v = 0.3 are given ird Table 1.

Table I
Boundary conditions ] #a 1
v=0 ’ M, =0 7, =0 1.3)81 0.3756
v=0 j M,=0 u=0 ‘ 1.3:81 2.480
v=0 dujdr =0 u=0 ’ 5.3333 ' 2,910
v=0 | dvidr=0 } T, =0 ' 538 | .93
]

Introducing (33. 19) in (33. 8), we find an exp:ression for S. For the third case
of the boundary conditions, when at the plate edge 1= 0, dv/dr = 0, it has the form
at the

v 2 13 0\ L VU =T 160 — 104
S s(n—‘+t+(+c>+ 7566 [(I—v*)l +

(33. 25)
+ B2 gy - B p g g o).

Analogous formulas for elastically supported plate: are given in /VIIL. 3/. Calcula-
tions show that when the plate edges can move freely in the plane of the plate, regions
of compressive (negative) annular stresses appear near them, which can produce

a local loss of stability near its edge in an unsymmetrical form (the appearance of
waves), This phenomenon has been studied by D. Yu., Panov and V.1, Feodos'ev
/VIIL. 9/. The results of their investigations show that the approximate solutions

of the problem of deflections of a circular plate, ir which the plate surface is
assumed to be axially symmetric, should be appliel with care if one is considering

a case when the plate edges can move freely in its slane.

¥ This formula for the case of a clamped plate was obtained earlier in /v, 1/
by a transformation of the series (33, 17) with {= 0,
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§ 34. Asymptotic Solution of the Problem of the Behavior of
a Circular Plate under Large Edge Loadings

Let us return to the problem, considered in § 32, of determining the deflec-
tion of a freely-supported circular plate under the action of edge loading in the plane
of the plate /VIIL 6/. The calculations of § 32 have shown that the method of power
series can be applied successfully only in the case of not very large stresses on
the plate, when the ratio of the value of the stress to its critical value for start of
buckling does not exceed 10-15, If the above- mentioned ratio is equal to 15, then to
obtain sufficient accuracy one has to evaluate nearly 30 terms of the series.

In order to obtain information on the behavior of the plate under very large
compressive stresses, we shall apply the method of asymptotic solutions of differ-
ential equations.

The power series calculations have shown that with increasing edge compres-
sion on the plate, a region of almost uniform tension is produced within it where
T,>0. Under increasing edge compression this region becomes more extensive,
and the edge zone, where the plate is compressed, becomes increasingly narrow,
For further consideration it is convenient to introduce new substitutions

3=V —Bi,(1 —pYm pra=DuPr, q=——§ﬁl.Q, (34. 1)

where pi, is the value on the contour of the quantity pi,, defined—just as the guantity
n—by (32.14); px is the critical value of p,,. Here, if q%= 0, p= 0, equation
(32. 18) takes the form

€, 3 Q4 pQ=0
: = (34. 2)
3 Ly—s, ¢
* g— ; = Pix ’
In an analogous manner we transform equation (32. 19) into the form
e, 3 4B L
ap p_l = P2 (34, 3)
" — Pis

As according to (34.1) §=0 for p=1, and B==1/n~l’ —pi for p= 0, the boundary
conditions (32. 11), (32.20), and (32, 31) reduce to the equations

P(O)=1, (‘% o—“/—"fgl- 1Q(0) =0, (34.4)
Y —ru
dPifg =Ly — =% =_l.|/w°— =
=1V =R )= G =V a0 (34.5)

In order to obtain simpler approximate equations, characterizing the state of the
plate under large values of edge stress P14, we shall carry out the limit in the
equations (34. 2)-(34. 5) by setting —-p1x = =. We ghall call the equation obtained
the first approximation equations of the edge effect. Denoting the respective approx-
imate values of the functions P, and Q by P,° and Q°, for determining them we

have the equations

195



R T

OF it

e

ey 9B 4 OB e (34.6)
a7 gm TPOC=0,

cE P (0)=1, (dQ%dp)o= 0, (34,7)

tim 2y 29 1 0.
Foe B pe b . {34.8)

To solve these equations we shall introduce a new independent variable x and un-
known functions y and z by means of the substitut:ons

x =ke=? df = — dxfva, (34.9)
PP = —ay Q”=V_2N‘Z, (34.10)

where { and » are numbers whose values so far remain undetermined.

When f§ = wehavex =0, when § =0, x = ¢, Consequently, the relations
(34.6)-(34,8) are replaced by the equations

a4/ 2 _ AN
s Z)ra=0 x L X)) ¥e=0, (34.11)
D= rdzy
yO==7, (55,0 (34.12)
YN o dry __
Jim (x 23 =0, lim (x2)=o (34.13)

We shall assume that the solution satisfying the boundary conditions can be expressed
by converging power series

y.=5:(~l)’y.x", 7= f:(~— 1) z,xt8+t, (34.14)

0 =0

Substituting these series in (34.11) and equating to zero the sums of the coefficients
of the same powers of x, we obtain the recurrence relations

2Py =Y  znza, (34.15)
m iy -
2 i § = aYr .
st 172 ”Enx‘zy (34.16)

In particular, for s = 0 we obtain from the last equation:
2o =2ZyYo ., Jo=1. (34.17)

According to these one can calculate the desired number of coefficients of the
series (34, 14) if one takes any arbitrary value for z,.

If the series converge, then one can differen iate them term by term, and the
conditions (34.13) will be automatically satisfied,

The second of the conditions (34.12) will be satisfied if for t one takes a root
of the left-hand member of that equation. Friedrichs and Stoker /VIIL 6/ chose the
smallest of the roots, which turned out to be £= 0.28618. Then the number was
determined from the first condition (34. 12),

When one knows m and £, one can calculate z1l the quantities which characterize
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the stressed state of the plate, Computations have shown that with the increase of
the edge compression of the plate, the ratio of the value of the radial membrane
stresses in the interior parts of the plate to the radial stresses on the contour have
as limit the negative number --0,473. Thus for large values of compression the
inner part of the plate turns out to be expanded, Further calculations have shown
that with a strong edge compresgsion the largest bending stresses of the plate are
approximately equal to the quantity

LUV 3IT=9)-E(TwENP(2RI0).

This formula has an asymptotic character, i.e., its relative error is the smaller
the larger the edge compression of the plate. Of course it holds when the maximal
compresasive stresses do not exceed the elastic limit. One has also to take into
account that for very large values of compression of the plate, the rise angles of
the plate elements are no longer small, and the theory of "shallow" shells-—-on

the basis of which our initial differential equations were derived—becomes inapplic-
able.

In that case, one has to make use of the corrected equations of the edge effect,
which can be found, for example, in the work of Reissner /VIIL 8/. It is also not
difficult to derive them from the equations (7. 4) and (7. 5) of this monograph,

We shall further consider the asymptotic expansion of the solution sought in
powers of the pmall parameter i=y/ v — pi. proposed by Friedrichs and Stoker
/VIlL.6/. Here, for brevity, we shall limit ourselves to two terms of that expan-
sion. We shall assume that the functions Py and Q introduced above for zero values
of A have derivatives

’ 9 9
Pe =2 P, @ =g 1B

i

Then
P.)=PeB+2P B, QP=Q B+ ' H): (34,18}

Substituting the quantity 1/A for }-V — p1, in equations (34.3) and (34. 2) and differ-
entiating them with respect to %,"and then setting A= 0, we shall obtain the equa-
tions

&P L PP
T Y= (34.19)

£Q’ aQe
A pogy 4 QY =3,
o TP QP ; (34.20)

Also from the boundary conditions (34.4) we find the relations

Py (0)=0, i‘%)o—u-*-v)(go(m:o_ (34.21)

Differentiating the equations (34.5) with respect to A gives the relations

A[dP_ L #£P__g _".[;‘2 _ L.y
ax[dp:‘ a g T A ] M oap ’

=

for f=
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Numerical computations have shown that the secoad terms of the left-hand members
of these equations have the limits zero fori— 0, Besides, according to (34. 18),

Gl T R LY L 4PN __dpy
dp-dﬁ+ ap o n ' ap ad "

Therefore, we shall define the functions P'l and Q' so as to satisfy the conditions

awy aQ’ (34.22)
e P=x =Y,

dP _dp_ Py = 0.
We shall seek the solution of the system of non~homogeneous linear equations (34,19)
and (34, 20) for Pl and Q' in the usual way, setting

Pl=xdn, Q=t+nh, (34.23)

where = and k are the particular solutions of the equations (34.18) and (34.20), while
the functions =, and k; satisfy the respective hom Jgeneous equations

‘;'E,‘ — Q% =0, % + Py Qon =0 (34.24)

It is obvious that if P1O{f) and QO(B) are solutions of the system of equations (34.6),
then the functions £, —+a) and Q°(3+e) , where a i8 gsome parameter, represent a
one-parameter family of solutions of these equations. We shall show that the
functions

= PeE ), k= L0 (34.25)

satis{y the equations (34. 24). In fact, introducing (34. 25) in the first of these equa-
tions and using (34. 6), we have

a0 3 . 4 app | a4
mtd;la_o‘p’*Q)J—QOEQO(9+G)=E .‘F_; O}_O

In the same way, we convince ourselves that the se¢cond of the equations (34, 24) is
also satisfied. As the second one-parameter fami. y of solutions of the equations
(34.24), one can take the system of functions «?P°(«3)and o*Q°(aB)which we substitute
for Plo and QO0, satisfying the equations (34.6). It is not difficult to show that the
derivatives of these functions with respect to a, at a = 1, represent one more solu-
iion of the equations (34,24):

,,=p%°+ 2P0, by =8 %Jzoa. (34.26)

In order to find the particular integral of the non-himogeneous equations, we shall
introduce the substitutions

x =t P/ =3uwy, Q' =—2V 207, (34.27)

Then the equations (34.19) and (34.20) transform into the equations
LAy A
*ax (x dx +2= = dx '
I dr! dz (34.28)

—_ —y =y —zy ==,
* dx x dx % Y dx
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The functions y and z were already defined above, They are here considered as
known,

Substituting in (34.28) the power series

y = Z.J (— 1Py, = i (— 1)525'x25+, (34,29)

gl =t

and also {34.15) and (34.16), and equating the coefficients of the same powers of x,
it is easy to obtain the system of equations which has to be satisfied by the coeffi-
cients of the series. If one somehow chooses values for the first coefficients, then
the remaining coefficients can be determined successively. In this way the particu-
lar integral of the equations (34. 19) and (34. 20) satisfying the conditions (34. 22)
has been found.

In order to obtain a solution which satisfies the boundary conditions (34, 21),
it is necessary to add to the particular integral the corresponding linear combina-
tion of the solutions (34. 25) and (34. 26) of the homogeneous equations.

Calculations by this method have shown that at the plate edge with r = a, the
following asymptotic expansions are valid:

Pi=1. Q=161 — 074V — puet .,

ap 184y Q 2,
——161+ = +o o ;”+....

(34.30)

The ratio of the radial stress at the center of the plate to the radial stress at the
plate edge may be represented by the asymptotic formula

{34.31)

nU=0__g47- 18
Tilr=a) ]/__;’.



Chapter IX

STABILITY OF THE MEMBRANE STATE OF EQUILIBRIUM
OF CYLINDRICAL SHELLS OF MEDIUM LENGTH

§ 35. Some Relations of the Theory of Shallow Cylindrical Shells

We shall refer the middle surface ¢ of a shell to cylindrical coordinates a= x
and f= s, where x is the distance measured alorg the generator, s is the arc dis-
tance measured along the curve of the cross-section, Then, in the formulas of

§ 25 one has to set B = 1, k,= 0, k,= 1/R = k (R is the radius of curvature of the
shell before deformation).

In particular, according to (25. 8) and (25. ¢), we find the relative elongations
of the middle surface and its change of curvature as it is transformed from o0°to
ol:

1 Qul 1 sowlnNg Swl  dw
G=ot ) Tt

d=dtew 4 (Y 4O 2

2\ ds s o9 '
(35.1)
dul | a0t | dwl saml | duty | b Bul
| Al Pudubi e (T —_— % &
=t atauletan) e =&
. w2
ﬂ‘—-‘-‘ —_— x

i T T o L2

The internal stresses and moments are defined as before by the formulas (25. 10).
The equations of equilibrium (25, 11) and (25. 12) take the simple form

ol [ a_o Th

arl (35.2)
wt =0 Lty =0

Danw! — T} (5% 4 FeLN__ gy (2wt 4 Sl

dox? dx? 12\ dx0s dxds - (35. 3)
I ST L i NS -
G rm ey k +p2=0,

where

B ()
M) =T T 5

p>0 is the density of the external normal pressure,

Introducing (25. 10) and (35. 1), we express the equations (35. 2) in terms of
the displacement components:

ol (14y) vl 1—v Ful M i (35. 4)
wt 2 hat T e TR t/ ’

Sl  tbv S 1y Pl ¢ ey (35.5)
a,=+ 2 'axaa+ 2 a;z+oa(k“’)+f‘ o
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e SR

Jdurl dut dw!
ox ox (w)+6:'d.¢_]}+
(35.6)
1—v 4 owl  Jw! du” gl l)J)O duwl g
TG wm o Wt

1,2 .
Js o5 dx .

—

After combining the equations of equilibrium
2 arg g Bgsa LR 9 oo
l—v 0s* (3‘)‘4)_’-1))(‘(30»4) 1 —v dxos 35. 5) o

we eliminate v and obtain the following equation, expressing the relation between
ul and wi:

AAL! -y T ( gul > 2oen
ax 1= g
az,l I sl (35.7)
T oxds

Analogous to this, we find the equation expressing the relation between v! and w

880t = — - kot )—(2+v)—<k"i') -

ox?
_ 2 _0’/; _ of L4v 0%
T—v dx2 as? l—v dxds

(35. 8)

Thus, for the determination of the equilibrium state o¢!we have a system of
three equatlons (35.7), (35.8), and (35.3), which are linear in u' and v' and non-
linear in w',

In the state of neutral equilibrium,

together with the equations (35. 3), (35.7)
and (35. 8), the equations (25. 26) and (25

. 27) also have to be satisfied:
T, T3 AT 3Ty
T T =0 =0 (35. 9)
a‘*uﬂ
DAAw — T; ( ) axt ) 2Tu

Pwi
Dxds + axda)
i
—T) 62w° B’uv

o5t k> T‘ oxt
. w [&___ (35, 10)
T e ax0s T a5 0.

where T;, T,, are additional elongations which appear in the transformation of the
surface ¢! into the surface o*, according to (25, 24)

dw [ fud dw!
g = — +

du
M+§?"—;+W+

dw Jurl
+5 as ds‘ +T>

(35.11)

dv dwo qw! du"” aw!
] — 1
2812 e + + ) ‘Jf‘ s T ox )

u, v, w are the projections of an infinitesimal additional displacement
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The equations (35. 9) can be replaced by the equations

Mu,_k‘,"“‘_ﬂ.;_.a_’(k "_"'_)_ 2_ 9%

ax ' gst ox 1— o
_Ph  Vty O (35.12)
ox: ' l—nv dxds’
= P ha) — (2 S fpaN__2 Oh
by = as? (kw) G+ ds( dx° 1—v odx2
L Oh g Ve 0
9s? I—v a-ds’
where
L O[dw ot dwl\  dw/ow | dul
fi= r)x[dx ox | ox "03(6s+ ds )J+
L— v 4 [dw foud | dul dw /0wt |, Gwl\] T (35.13)
+ 2 'ds[dx (ds + as >+ as k?;-*-—d_x_)} 1'.__2'

(35. 12) and (35. 10) represent a system of three linear homogeneous equations in
u, v, w.

These equations are the equations of equil brium in the components of dis-
placement., It is frequently more convenient to :nake use of the equations of a mixed
method, which define the deflection and the atress function. Setting

1
T 2
ds?

Yo (35. 14)

[ 0
Ta= xds > "1 ao’

we satisfy the equations (35. 2) identically, where the condition of the compatibility
of deformations has to be satisfied:

AN — Et {(ﬂ)’-m lul | OMA

0x0s Ix0s dxds (35. 15)
i M, OCwh gwl PP
o (o T T axi}_o'

This equation together with the equation obtained from (35. 3), by the substitution
(35. 14), represents a system of two non-linear aquations in yfand w!. In the
same way, setting

Th=t o= 8 (35.16)

o5’ oxas’ * axt’

we satisfy the equations (35. 9), where the additional stress function and the addition-
al deflection w are mutually related by the equil brium equation (35. 10) and by the
condition of compatibility of deformations (20, 2-.):

AA‘,_Et[Q.y_w_(QL“‘O Fwl \ _ 0w (%0 i‘ﬁ'”__k)_
d.xds \ 0x0s dxds 0x2 \ 953 os? (35.17)
ot [ JuP dwl
—_ —_— ) |=0.
a5 \ ox + ax3 ]

If the initial deflections are negligible, then before the loss of stability a membrane

state or a near-membrane state is possible. For these one can neglect the changes
YPr s : : !

in curvature Z¥. , il , T in comparison wi‘h k, and further the rotations St
dx? os3 odxds ax

and % can be considered as quantities of the same order as the elongations.
s
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Then the equations of equilibrium of the shell, (35.3), (35.4) and (35.5), become
linear, and the equations of neutral equilibrium can be considerably simplified; in
the components of displacement they take the form

aw
AAu=—kv—+ a5 ox
(35. 18)
- _ 8 (O
887 = — = (k) — (2 +v) - (k =)
(35.19)

e ow 2w
W I o1 O 1 =
1 ox 2T dxds 5 as? o

DAAw - Tak — T

where
Tz—K(—+km+ v—-—) K== EH(1 — ).
We multiply the equation (35, 19) by R = 1/k and operate upon it by AA(...). Using

(35. 18) and the relations

AA( ou >= (AAg), 88 ( il )—— (8Av), (35. 19b)

we obtain an equation for w

0"w 0%
AA{R (DMW— Tiow 2 Th s — (35. 20)
—T;—g—; }+Etk—..o

Introducing the stress functions y the equations (35. 18) become

AM——EH;%:O, (35. 21)

and in (35, 19) one has to set T,-—‘;j—.

x?

Tt is interesting to note that if the initial deflection wP is a function of the
argun 't Ax+us, where A and u are real numbers, then for displacement compon-
ents wh ch are functions of the same argument, the non-linear terms in the equa-
tions (35.7), (35.8), and (35.15), and also in (35, 3) cancel each other upon the
gsubstitution of (35, 14).

0 tmomana y',,.: cn
el R S

OF POOR Gunuii¥
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§36. The Stability of a Cylindrical Shell of Circular Cross-Section
under Axial Compression and Normal Pressure

We shall assume that a cylindrical shell of circular cross-section is subject
to the simultaneous action of an axial compression p;, uniformly distributed along
the end sections, and of a uniform external normal pressure p. We shall neglect
the effect of the clamping conditions on the first Jorm of equilibrium, Then, before
the loss of stability the stresses will be:

Tl=p<0, Ty=—Rp. T{—0 (R=const).

We shall try to determine the additional displacement cornponents in the form

u=Usin—';-x-sin%, o= Vco- '-’Ecos %,
(36. 1)
w= Wcos%’—(-sin LAy

inR

m= L i=1,2..)
L

where n is the number of waves formed on the ci‘cumference with the buckling of
the shell,

Then, as seen from (35, 21), the stress fun:tion is of the form

Y= Wcos X sin .,
R R

where
¥ = — Etm*RW/(m*+ n?)%. (36. 2)

Introducing (36. 1) in equation (35. 20) we obtain tl.e approximate relationship between
the load, the shell parameters, and the numbers of ¥aves m andn, which is obtained
from the corresponding equation of /IX. 4/, even if one of the quantities m2or n2

is large in comparison with unity.

— pum* - Rpnt =D (m* 4 n*)2 k¥ - tmY{m? + n?)3. (36. 3)

In order that all the conditions of the problem be strictly satisfied, it is necessary
to solve that equation for m. Then we substitute the values found for m;, mg,...
in the boundary conditions and look for the small¢ st values of {pi| and p for which
these conditions are satisfied. Here we note that as the equation (36. 3) contains
only even powers of m and the boundary conditions are assumed to be the same on
both ends of the shell, it is only necessary to verify that they are fulfilled at one
end of the shell. Denoting the roots of the equatinby + my(j = 1, 2, 3, 4), we
obtain for w the expression

+
ns y*
- = E |4 iy .
w = sin JCos 3 (36. 4)

=
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And according to (35, 18)

»

4
ns W; (mn® —vm¥ . mx
u==Rsin — Wi\mn — W2 mpx
e D
=i

4
v,—:RcosL’. _‘!'M*_“)"_’"ﬂcos_"‘li_,
R (mf+ n?? R

Jml

We shall assume that the edge contours x = ¢ L/2 are absolutely rigid with respect
to elongation and deflection in their plane. This means that for x = £ L/2 the
following conditions should hold:

4
w=0 or 2Wj€05p1=0 (ny=m;LI2R) (36.5)
=l

v=0 or, by (36.5)

4
Y W, 24 v amp cosp/(mP 4 n?) =0. (36. 6)

=1

Various cases are possible for displacements perpendicular tothe plane of the edge
stiffening rib.

A. It can turn out thet the stiffening ribs have almost no resistance to torsion
and are very easily deformed. In that case the displacements u and the rotations —
occur freely and in addition to the geometrical conditions (36.5) and (36.6) it ™
is necessary to satisfy the static conditions for x = L/2

Yw
x3

M,.._D( +v%>=0. Ty om K (5 ) =0, §Tuds=0.

Using (36. 1) and (36. 5), one can write the first of these conditions in the form

4
¥ Wy cosp;=0. (36. 74)
it
By (36.1), (36.6), and (36. 7A) the second condition may be brought into the form

4
I Wem} cos wif (m} + n?F=0. (36.8A)

=1
The third conditions is satisfied owing to the periodicity of the additional displace-
ments relative to s.

One can satisfy all these boundary conditions by setting

my=...=my=irRIL {i--odd integer)

B. If the edge contours are supported by stiffening ribg which prevent not
only displacements in their plane, but also displacements perpendicular to these
planes (with the exclusion of rigid body displacements), then for x = ¢ L/2, apart
from (36. 5) and (36, 6) the following conditions should also be satisfied
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4
:—:=0 or Y Wmysin =0,

= (36. 7TB)
du
=0
or, by (36, 7B)
o ‘Va 3 2
H [3) -
2w milsing/ (mf + 2t =0, (36. 8B)

J=t

;f Tds =0, ;f T12ds —= 0.

The last two conditions are satisfied identically cwing to the periodicity of the solu-
tion under investigation in s.

I. We shall investigate the case p = 0% in greater detail.
In this case, according to (36, 3)
— P =kVEID(E+ 1K), t=t(m -+ n?):[2mRVIT V) ]. (36.9)
The minimum of p; isat { = 1:
—p=EBRYV 3(1 —v)==0.6E¢/R (v=0.3). (36.10)

This absolute minimum of the stress is reached for values of m and n of the order
of VR/t. Therefore every term of (36. 6) which c ontains a factor of the order of
1/nin comparison with the corresponding term o' (36. 5) can be considered as negli-
gibly small if we admit an inaccuracy of the orde - of V#R in comparison with
unity. Consequently, with that degree of accuracy the boundary condition (36, 6)

is approximately satisfied also in the variant B, Analogous to this, equation

(36. 8B), all terms of which contain factors of the order of 1/n? in comparison with
the corresponding terms of equation (36. TB), can be considered as approximately
satisfied if one neglects t/R in comparison with unity. Hence, to satisfy the re-
maining conditions (36. 5) and (36. 7B) for case B, one can take the corrugated

face after the loss of stability to be of the form

ns X myx
w=sin—( W, — - Wiz 05 2=},
sinR( 1cosR+ 2 sl'2
Then m,; and m, are found from the equations

Wicospr+ Wacospa =0, Wim, sinp -+ Wamzsin pa==0. (36. 11)

The compatibility condition for Wi and W3 is

pltgpl=pztgp3, (36. 11)

and this can be satisfied for every such pair of values uj, ujfor which p, — m <L m
As L/2R~1, m,; and mare large, and so the values of Ty at m = m; and m, differ
only slightly from its absolute minimum. Therefire the critical axial stress can
be determined with good accuracy from (36. 10). [t is applicable also in the case
A, as with

* See articles /IX. 2/ and /IX. 3/.
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my=m: =ixR/L (i--odd integer)
the boundary conditions are exactly satisfied.

Note that as the boundary conditions in case B are only approximately fulfilled
the form of the corrugated surface can vary considerably from the actual one, but
as T4l changes very slowly near its minimum with change of m and n, the critical
stress will be determined with an accuracy up to t/R in comparison with unity. In
fact, according to (36.9), for p = 0 we have in the neighbourhood of the minimum

=147,
where {,is a small quantity. Let §, be a quantity of the order of J4/R. Then

c+%:1+:l+1—c.+d=2+:€,

i.e,, an error in the quantity { of the order of Vi/R leads to an error of the order
of t/R in comparison with unity in T, .

II. Let the critical values of the axial and contour stress be connected by the
relation*:
— pr=MpR, (36.12)
where \; denotes a given quantity (for uniform compression, e.g., A = 0.5). In
this case, according to (36.3)

Rp ={D(m? + n?) k* + Etm?/(m? + ) (n+ hm?)
or, setting

b= (m3+n¥):m, 2=t:RVI2(1—»3), (36.13)
we have
Rp = Etm (¥ +1/8%) : {54 (M — 1) m]. (36.14)

From the minimal condition dp/déi=0 we find:

eza~=[3+ ——2"‘“:—-’ D] J g1tz "}.

]
If 2 # oo, then dpidm>0.
Consequently, m = mg = sR/L.

With Ai= 1, i.e., if the axial stress before buckling is equal to the contour

stress
t=n=7 3.V (36.15)
In the general case
§=28_:(1+P), (36.16)

* The formulas given below were obtained by us in 1950, In 1953 they were gene-
ralized for the case of a conical shell by A. V. Sachenkov in his candidate's
dissertation presented at the Kazan' State University. See also /IX. 8/ and
/1X. 8/.
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where [ satisfies the equation
T Wb =GP B -S4l @e1)
8 =360 (1 —2)0 8=ViR: [V 2(1 —wyh},

Hence it follows that

—02LB<02, for 08326"> —29, (36.18)

Here for B one can take the smallest (in absolute value) root of the equation*:
B*(9 —50") L B(6— &) 48" =0, (36.19)

and the approximate value of the critical pressure is
{8
pn=1.3[Et%(l.33+2ﬁ‘):[l —%6’(1—}—&)}. (36. 20)

the change in the value of p is siow near the minimum. Therefore the critical
pressure found from (36. 19) for a given B differs even at the boundaries of the
region (36. 18) from its value for a B satisfying the minimization condition (36.17)
by less than 0.6%, even though the error in 8 is %.

For shells satisfying the condition

—0ICBCOL or 0.492 361 (1 ~2)0> —0.82, (36. 21)
one can set f=0, in (36.17), admitting an increased error of about 1%. Thus we
arrive at the simple formula

1.2£tm

a _v,)'T:“ — 1.81 (; -—A;)ﬂ]. (36. 22)

Fr=

In the case of uniform compression A1= 0.5 and with the condition (36. 21)

. _0.85E¢ N T )65 VIR (36. 23)
P (E) '[1 N (l—v*)’h]'

In the general case, using (36.17) and (36. 13), on2 can bring (36. 14) into the form

Pe=08S Et™a:[L(1 - v g}, (36. 24)
where
=t Epfl -y raap ]} v ZEAZMYR (g6 g

For a given f the corresponding values of § are ensily determined from (36.17). A
table of values of a has been prepared on the basit: of formula (36. 25). It includes
the results for 0.1 B 0.1, as they are covered, as shown above, by the simple
formula (36. 22).

* In the article /IX. 8/ this equation contains a typographical error, but the
remaining formulas are given correctly,
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Table II

% |1.1s'1.12 105|099|09’2|080

079107"]004 059|049

169llﬁ2|155|149|143 35|132

1.97'1.90 182|17a

—9/]12.5 755'519'381'290.225‘176 l38|105‘()82|—

0.12 019'0?5'032‘0391045'051|057}064 070{

In conclusion, let us note that the formulas for the determination of the cri-
tical stress which were derived in this section for the case of the combined action
of external normal pressure and axial compression, are applicable only for freely-
supported edges. If there is an edge clamping of type B, then the non-fulfillment
of the boundary condition (36. 11) can bring about a real error in the value of the
critical stress. As a matter of fact, if for the loss of stability from external nor-
mal pressure, the buckling of the shell occurs with the formation of one half-wave
along its length, i.e., if the shell is of medium length, then xR~ L, g~ pa~x
and consequently, the values of pfory = 1and p = uywill differ markedly from the
absolute minimum of p. If the shell is very short, then u jand p ,are considerably
larger than =, but the theory developed here, based on the assumption of a mem-
brane state before buckling, turns out to be dubious.
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§ 37. The Stability of a Cylindrical Shell of Arbitrary Cross-Section
under Longitudinal Compression*, Shell with Elliptic Cross-Section.
Shell with Longitudinal Corrugation.

Before the loss of stability, just as in the case of a shell of circular cross-
section,

Tl=const, Tj=Tj=0. (37. 1)

Let the cross-section of the shell have an axis of symmetry. Then its curvature
can be expressed as a function of arc in the following way

k=Y a, cosris. i=mnal, (37.2)

r=0
where 21 is the length of the section contour and n,is an integer.

Obviously, with the loss of stability of the shell waves appear along the section
contour and their form will depend also on the fo'm of the contour. Therefore we
shall seek the solution of the equations (35. 20), (35. 21) of neutral equilibrium in
the form

= Cospx 53 Bpcos(/+ip)s, (37.3)

FE Y

w=cospx Y, Cpcos{j--ip)s.

p= -

where p is an integer and j = an/l, Here, for
p=(2p+1)= (37.4)
as shown in § 36, boundary conditions of type A are fulfilled at x = # L/2.

For the determination of the coefficients B, and C, we have an infinite number
of equations. Eliminating B, from them we obtain a system of equations in Cp:

Z x:—q CP—-1+“:—"°) C,,-+-2 *f‘-ﬂl Cp+rl:0' (37~ 5)
=1 @t

where we set

=
‘3 a
M=t +-§e,+27"(i,._a Coe )
{4
pemi
" T;
=
20~ Et

=

*  The theory relating to this problem has been terived in §§ 16-18 of the
monograph /0.13/.
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‘ - -
05 =Y %y bt ) NENLN PR pILAELAL TN (37. 8)

a0 p=—q =0
B, =ut:[p? + (F+ Ip)) (37.7)
T - o
T A S T TR (37. 8)
[ [l pe=t)
g=12 ... —olp0

For consistency of the system (37.5), the determinant of the coefficients of C/
should be zero:

Ileg e A5

» 21
A=| . M, Y RN Mo e =0 (37.9)
Vs pt 1
AR M Al

The unknown — Tl whose minimum is to be determined and which is an eigenvalue
of the boundary value problem under consideration, is contained only in the diagon-
al terms of the characteristic determinant. Besides, as is apparent from (37.6),

PLAL IS V.
’ o (37.10)

i.e., A is a symmetrical determinant. Consequently, the equation (37.9) is the so-
called secular equation, all of whose roots are real.

As is well known, for the infinite determinant to converge, it is necessary
and sufficient that the derivatives of the diagonal terms and the sum of the non-
diagonal terms converge absolutely.

We shall multiply the p-th row of the determinant by &m:. Then the product of
the diagonal terms has the form:

= 9 2 ad 5 L
tf, %% BN\ . 0
[ {’—';f+j,—+;‘§- —;(E,_,+:,+,)}- [1a+an

=1 P

Ya,, converges absolutely even upgn the replacement of the quantities &,_, and

t,., Dy the largest of them, as Y« coOnverges, and {p —0asl/pt Conse-

mal

quently, this product converges absolutely.

We shall replace ¢,_, and :,,, by the largest of them, &, in (37.6). Then
the sum of the non-diagonal terms of the p-th row will be less than

. o
Emz P

p=t 2=l

and the sum of all non-diagonal terms will be less than

2 5p€m2 E“r“p I

p=—w Pl rmt

and will, consequently, converge as l/p“.
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Limiting oneself to a finite number of terras in the series (37. 3), we find the
approximate eigenfunction of the problem. As is well known, the sequence of the
latter converges if the problem has a Green's function, finite at a singular point
/0.23/. In our case the Green's functions are displacements under the action of
point forces and have finite values everywhere, The actual determination of the
critical stress from (37. 9) can be carried out orly approximately, taking instead
of A a determinant of finite order. It can be shcwn that of all determinants of a
given order, the best approximation can be given by the one in which the diagonal
terms are

3~1 ¢ 1
az1. 0 and A

Without dwelling on the formal proof of this statement, we shall, in what
follows, determine the approximate value of the critical stress from the equation

i P
(37.11)

S P =0,
-1 u

i 1
i )

which can also be obtained from the energycriterioafor stability, expressedin the form
(25. 31). In fact, according to the nature of the problem, one can expect to obtain
a sufficiently good approximation by retaining a £ mall number of terms of the Ritz
series, taking the components of the additional d- splacement in the following form:

2 2
4= sinpx 2 Apcos{ j+ pi)s, v=cos ux Z Bysin{ j+ipys.
p=—z p=— (37.12)

]
w == (oS px E Cpc0s{j+ip)s.

P 1

Setting az= a3= ... = 0in (37.2) using (25, 31) ind the condition B = 1, we obtain
13 equations in 13 unknowns A-z, A—y, ..., Ci:

L8 _43_  _93 .

M, 0B, T g,

where A and B_ simply expressions in C_. Thus, in order to determine C—y,
Co. C; we obtain three equations, the consistency conditions of which gives the
characteristic equation (37. 11). The reader can convince himself of this by carry-
ing out the calculations indicated which are simpl: inprinciple, but rather laborious.-

Before going on to the determination of the -ipproximate value of the critical
stress from the equation (37. 11), we shall note that limiting ourselves to a finite
number of terms of the Ritz series or, what is th. same, replacing A by the deter-
minant of a finite order, we find the critical stress with an error on the larger side,
as this imposes supplementary constraints which 1inder the buckling of the shell.

We shall consider the problem further for tt e two limiting cases when either
i2«j?, or i2»j2,

A. Stability of a shell with elliptical cross-section

Let the cross-section of the middle surface >f the shell be given by the equa-
tion

p=ry(1 +-Acos n.p), (37.13)
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where r, is the mean radius and A and n, are quantities characterizing the deviation
of the shape of the cross-section from a circle of radius ro. Then

ro{{l + dcos ny2) 4 Mnlsin? s

R =

(1 + »cos ae) + Ponyisintay p 4 (1 + Acosngg) hnPeos mg )

Such a section can be approximately replaced by the section (37. 3) investigated by
us if the parameters a. are so chosen that the curvature of the fictitious curve is
equal to the curvature of the given curve. Setting a,= a3= ... = 0O and equating the
curvature of the curve (37. 13) at the points of greatest and smallest curvature to
the curvatures of the curve (37, 3) at the corresponding points, we find that

ROt 5 A Y G bl ) I oLl AL N (37. 14)

Iy = .
’ re{l — Mt IR

In the case of a shell of elliptical cross-section

no=2 =2 (37.15)

* With the loss of stability of a thin cylindrical shell with circular cross-section,
waves appear along the length and the circumference of the shell, so that the quanti-
ties m2 = u2ro?, n2 = j2ry? can be considered as large in comparison with unity.

We assume that at least one of the quantities u? and j? is large in comparison with i2
also for an elliptical section of small eccentricity, i.e., we congider that

W pr )
Then, according to (37. 8)

bl — ) io =&+ 0O, =i + 7 (37. 16)
Em= b (1 — 20, £, =& (1 + 20

Introducing these expressions in (37. 9) we find

_ % 4’ -1 _ e
M= F (e = KNS A (37.17)
W =gt = o (1§12 kot = MO =apube (1 - U2,
_ » s
S e CAR UL
Consequently, setting
AP — 1. (37.18)

the equation (37.11) can be brought into the form

ot (2.,-«:,'@ + i'lg‘: + mx> — Jufa N + et (37.19)

a
Solving this equation to the first approximation and considering that the eccentricity
of the section is small, we shall neglect the terms containing {“and ﬂf. Thus, we

find the approximate values of the roots

o =0 ek V2 wu=-asbk V.
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* The smallest value of the critical stress gives tae root :=r,, for which, minimig-
ing t, with respect to Ey. we find

[ l/ ag +,;£ a2 V2, V=2, },.

Introducing these values of Tt and & in (37.19), we convince ourselves that it
was admissible to neglect--just as we did--the terms containing §2 if 2«1, as
we had assumed. The term %716 is also small. provided that ad LB, OF
the terms neglected earlier in the equation (37. 19), the largest is

agla, 6?2,
In the second approximation, setting

=Tl +8)

and neglecting the squares and higher powers of 8 in comparison with unity, we
find that o= _ 1,84, V73

Thus, in the second approximation

— (37.20)
Yo, min =29 l/ ot~ agn, VI 4 SET‘,'

Whence it follows that :,~ts, or, in view of (37. 14)

fg~try.
On the other hand,

So=p%r (w3 4 2

therefore, if our assumption pi4 f2>>% i8 not true and u2~ iz, j2~ 12, then
we would obtain

£~ i B4t ~ p?

which contradicts the condition & ~tr,.

This means that (37. 16) indeed gives t:<< 1, which we actually assumed when
simplifying the characteristic equation. %

For a shell of elliptical section, a form of tuckling is also possible for which
3= 0. This form of loss of stability can be called almost-symmetrical in analogy
with the axially symmetrical form of loss of stabi ity of a shell of circular section.
Here, instead of (37.3) we seek a solution of the system of equations of equilibrium-
in the form

b= Y Bycospis, W=YC,cospis. (37.21)

p=1 =0

We shall obtain the corresponding characteristic equation from (37. 9) by equating
to zero all the 4¢ and E, with negative indices. I.imiting ourselves again to a
determinant of the third order, we arrive at the equation

AS—t AP A0
8= A,! LYLE 7. W) =0,
Ag? A2 A~ ¢,
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in expanding which we note that in the case under consideration, j= 0, Z= 0, & =¢; =¢
(since 12« u?). Solving the cubic equation obtained in the second approximation, we

find
tor=21Y 02 — s VI + Sat (37.22)
L ]

The comparison of (37, 22) with (37. 20) shows that a shell of elliptical section under
axial compression buckles in an almost symmetrical form,

B. Stability of a corrugated shell of circular section with longitudinal corruga-
tions.

Let ny be the number of corrugations along the circumference of the section,
A=24/r, for amplitude of corrugation 28.

According to (37. 14)
3= (1= 282 03) 1y, ay=ha?iry, 32 > >ayl (317, 23)

If each circumference wave which is formed under buckling encompasses several
corrugations, then

GNP GE— >
therefore according to (37, 8)
. 2 B o, ., al,
"005%‘1"’0'50“}‘7'(:1 i) A":€+TI‘=':
Neglecting the small terms we obtain from (37. 11) the equation

£} —atg b bty — ¢ =0,

where
SNy G SRR W ST N T L BT
@ ‘(5|+5—-|)—r2£°‘b E.f—l+‘ 4.o<€1+€-|'
= W% Tn* el J’ )

C=elw T G40+ v

The smaller positive root of this equation is
¢ ac T;
To the first approximation
by ,;,. - i’; +“T"(5, T T_:W— . (37. 24)
PRI

In particular, for o;= 0 this becomes the Lorentz-Timoshenko formula for a shell
of circular section., For large values of «j, according to (37, 24) the absolute mini-
mum of t;, is not reached for admissable values of u and j. Therefore one can take
the following as the critical values of 4 and j



w==/L, Jo=2x/l, 14 =2,
(37. 25)

which give the smallest possible value for t;.

In the theory of stability of shallow shells (which we have used in investigating
this problem) it had been assumed that n? > 1. Therefore our solution for n = 2
can turn out to be unsatisfactory. In the given case, however, to increases mono-
tonically together with n, and at first the increase in n is small within quite broad
limits of tg, as i°> jz; therefore, for the valuss (37.25), the formula (37, 24) can
be conaidered as satisfactory for the determination of the critical stress. Hence,
the number of waves on the circumference remains undetermined. Note that in
(37. 24) one can set, within an error of 1-2%,

b i = 2008 4 127700,

Example:
2ry =L =40 cm; 26=0.915 em; t=3.9-10"% cm;
n, =42, E==7.2-10* kg/c_mz; v=0.3.
We have
Nem 229107 jm I i=%, " = 1391048, = — 2
ay = 2.02; pa? = 2.457/400.

According to (27, 24)

Ty' = — 44 xg/em for n=2,

T = — 45 kg/em for n=35.
For a smooth shell of the same radius, T,! = - 32.6 kg/cm. Thus, in the case

given, the corrugation increases the critical st:'ess by 40%.
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§38. The Stability of a Shell of Circular Section
under Torsion and under the Action of Combined Stresses

Let a cylindrical shell of radius R be in equilibrium under the action of shear-
ing tangential stresses 1 and normal stresses p;, uniformly distributed along the
edge sections x = & 1./2, and also a normal external pressure p, uniformly distribut-
ed along the lateral surface of the shell. The equations of neutral equilibrium (35. 18)
and (35, 10) are satisfied if the components of displacements which appear with the
buckling of the shell are taken in the form

u-Zu;sm , v—E'u.sm "”““Hy, (38.1)
= 2 ™ COS —T"‘-+—m ,

where m, (k= 1, 2, ... , 8) are the roots of the equation
_ p,m? 3 _ = 2 p2pag -0 .
pim? + Rpn? — 2wvmn Et[(m - n2)? 224 (u'+n‘)‘]' (38. 2)
e e= 7 [2RR(] —vY),
Let
pr=— 2z, Rp=20t, p=m:n, (38, 3)
where Aj;and A, are given constants,
Then the characteristic equation (38. 2) is brought into the form
2t Y 1 pt (38. 4)
—— (\p2 — X)) = p? — = e e———
g Mt —ptda= e (bt ) b= -t

The case of a long shell, when R~LV: was considered in §19. It had been shown
that in this case n = 2 and the value of u corresponding to the critical stress has to
be determined from the equation

d+/op =0. (38.5)

irrespective of any boundary condition being satisfied.

In the case of a shell of medium length which we do not consider here, it is
necessary to satisfy at least the most important boundary condition

W=0 for x=="¢[/2. (38. 6)
For this we set
w= W, cos m'—‘:"—"{- Wscos —'"Lx:—", (38.7)

where m, and m, are the real roots of the equation (34. 8) which are small in abso-
lute value: the boundary conditions (38. 6) are satisfied, provided that



W=W =W m|-lrIz==?—"L—R-=2m,,

(38. 8)

Pl_‘l‘l=2l‘a’—'1’!‘°~
n

Note that as had been shown in /IX. 7/, two of the eight roots of the equation (38. 2)
with p; = p = 0, are real, and the others are coraplex. To satisfy the condition
(38. 6), we use both real roots m, and m,, The locus of the points for whichw = 0
is defined by the equation

] .
cos 3 [(ﬂh —+ mas) % + ns:; cos —:—‘ =0,

from which, using (38. 8), we obtain
() e

where i is an odd integer.

Hence it follows that with the buckling of tae shell, waves are formed, inclined
to the generators at an angle # given by the forraula

tgb=[(mi—mg) | :n={pi+tp|:2 (38. 8)

In the case of a long shell 8 << 1 and for a very short shell R > L. In the limit,
when R = ., the problem of the stability of a cy!indrical shell under torsion is trans-
formed into the problem of the stability of a flat strip under the action of shearing
forces, whose exact solution with the fulfillmen of the condition of free support or
clamping was given in the article of Southwell a1d Skan /1X.9/. As is known from
that solution and from earlier approximate solu.ions, with the buckling of the strip
by tangential forces, #= 45°. We make the assumption, later verified by the solu-
tion obtained, that in the case of a shell of medium length, tg & is much smaller
than unity and therefore if | My | < |4y | the quantity u, 4 can be neglected in com-
parison with unity

<< 1L (38.10)

We shall first consider the case when

M=l =0 (38.11)
According to (38. 4)
= N Dt (38. 12)
o " (ﬂl+ ﬂx) Pz(F-‘i’ p,)’
where 3,=32 foru = py (k= 1; 2).
Since | u2 | is considerably greater than | M1 l, ( I M2 |=3 I ut | (a8 can be

seen from the solution obtained) the preceding «quality can hold only when Bo+ 1/ B,
ig near its minimum, equal to two, where, obv cusly, to the minimal value of

1 corresponds a value of u, for which f§,<1. Hence it follows that f, is consider-
ably less than fl.. Therefore, in the first approximation we assume that

p'<<"ai_‘ p,+?‘-=%_ p,+%:2. (38.13)
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Besides, in that approximation we shall take e RO IO ¥
PR

L m+p) _ nn m POOR QU i‘(

[ ? g Pt

neglecting ulz in comparison with unity, Thus, we obtain the approximate equation

T oM 25—
e . = — 22, n'r= Qui(pz+ o),

from which we find in the first approximation

pr= —pg— V po? - 0.5n%,
S VRO St VTSR

The value of n* at the critical load is determined from the equation ¢x¢a = 0. It
is

nt = 6mg?/e. (38. 14)
Yere*, denoting the quantity v in the first approximation by v, we have:
ty = 135V 2m, Etest, — my =3m,. — my=my=xR/L. (38. 15)
To obtain the solution in the second approximation, we introduce (38. 14) and (38. 15)

in those terms of equation (38. 12) which were neglected in the first approximation
or which were determined inexactly and use the condition (39. 11). Thus we find

o () = e a5
L n% 4 2my? < - 0.068 1, ¥ e );
B2 (sr'*‘ﬂ_):Pz(QAIEJ —6.12mV e -+ 70.8 my%).

Introducing these expressions in (38. 12) we obtain the corrected equation for deter-
mining u,

2ua (2 + 2u5) @y = n*e -as,
where
a, = 1.083 — 3.06m, V¢ + 354m.%; G2 =2m,?e -+ 0.068m, Vs,

Consequently,
pr=— l,':’—[l +y i+ Qa—,,;.(ﬂ 4 aan )]

From condition ar/ an = 0 or, what amounts to the same, from equation ‘u,/:n= 0,
we obtain

* The formula (38, 15) was obtained by Kh., M. Mushtari in /IX. 7/.
See also /0. 13/,
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LAk ) =154 Ldm Ve rools
4a,my? nta Amy'a, Ve

Hence,
135 7m, v (1 + g2m.1/'l+o.oor)‘
Va, /

pr= —

where 1,is the quantity v in the second approximation,
Calculations show that for the quantities m , which satisfy the condition
0.03 Cmy Ve =23 0.12, b=V R: LV I(1 — ), (38. 16)

1, exceeds v1by less than 6%. The succeeding approximations somewhat reduce
this difference, Therefore, admitting the error indicated, with the shell parameter
satisfying the condition (38, 16), we shall take for the critical shearing stress

w0 == 1y = 121 E (/2R (QR/LYR - (1 — )%, (38.17)

Turning to the investigation of the general case, when at least one of the quantities
A3 and 1,is not equal to zero, we shall nevertheless assume that the loss of stabili
is caused by the torsion and that the stresses T,! and T,! are either tensile or com
pressive. but play a relatively small role in the buckling of the shell*, Denoting t
Tllk , T Tllz the critical stresses under pure axial compression, pure outward norm:
pressure and pure torsion respectively, from (35, 10), (36,20), and (38.17) we
find

| T =070 | T}, |, | Th, <3200 |ThL|.

Besides, according to (38. 14) and (38, 15)

e s B & R e T T

Consequently, all the terms of the expression ».4,? —u,4\; are approximately the
same if A; and A, take values which differ little from unity,

In order for the compressive forces to play only an auxiliary role in compari-
son with the shearing stress, the conditions | )« | = WW2<< 1, Xy <81 have to be
satisfied, The first of these two conditions i8 most essential, as when it is not ob-
served, the stability of the shell can be lost under axial compression with the form-
ing of many half-waves along the length of the shell, which would contradict the
assumed form of the buckling. We shall consider i, and A,as sufficiently small, so
that to the first approximation one could use the approximate equalities (38. 13).

Then it follows from (38. 4) that

AT SO . (38. 18)
Ete Tapg? 4 4y o — pg + &4

*  The exposition of this question is given her¢ as a natural development of our
article /IX.7/. An analogous setting of the problem was considered by
V.M. Darevskii /IX, 14/ in a work whose text, in the form of a published
article, is not known to us.
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Whence, after the substitution u; = u, + 2up we obtain an equation of the fourth de-
gree in uz, from which one can find 2 and thereupon ¥, as functions of n, In view
of the complexity of this direct method, we shall seek the solution of the problem
by an indirect method, setting

b= —yipr, A= — e, (38. 19)
where v; and v, have yet to be determined,

As L, L3, 73, and v, are given quantities, while u, is a quantity to be deter-
mined from the condition of minimum critical stress, the proposed substitution
(38.19) has no meaning if the matter concerns an"exact" determination of the stress.
If one sets oneself the problem of approximately determining the influence of the
axial compressive stress and external pressure (characterized by parameters v;
and vz, small in comparison with unity) upon the value of the critical shearing stress
t, then in the expressions (38. 19) for x4, one can take the corresponding quantity
p,¢, calculated for pure shear with p = p; = 0, which does not vary in the case of
the action of combined stresses. With small v; and ¥ ; the actual critical value of
w2 will differ little from uz¢ ; therefore, the introduction of (38, 19) in the small
terms of the equations (38, 18) will produce in these equations an error of the second
order of magnitude for v; and v in comparison with unity. If, in spite of this, one
considers that near the minimum t(u;) the error in the value of u; has a relatively
small effect upon 1, it may be expected that even with values of ¥ 3 and v ; of the
order of 0,2-0.3, the critical stress will be found with sufficient accuracy.

Thus we bring (38, 18) into the form

P nte 2 it (38. 20)

The negative root of this equation is

p,_—.—%{1+27.+V(1+27.)*+7(""7 m)}. (38. 21)

2mg? -

From the minimum condition for 1 (or l Y2 | ) we find

P 1.5 (1 4 20 — 41y +
2mqy?
4+ V50 2r — 4yl — v fdy — (T + 20l =3 (1 4+ 80, (38, 22)

Thus the critical shearing stress in the case of simultaneous action of normal
streases is

e = 1303, (38. 23)

where

am 1420+ v UF P F30 78— aml:Brri 484, (38.24)

Taking various values of v, and v,, we determine the corresponding 6lfrom
(38. 22) and then we find a from (38. 24), Then, from (38. 22) and (38. 21) we find
|z | as the quantity proportional to V meVe and from (38. 19) we determine the
corresponding Az and ;. The values thus found for a, L3, and 1, are given in
Table III.
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Table III

2 l 0.92 ‘ 0.86 [ 0.807 0.76 l 0.72
Wi l 0.033 ’ 0.065 I 0.096 I 0 l 0.037
WV ' 0 ‘ 0 l ) | 0.54 } 0.552

— VT [ 3.00 l 3.0 [ 3.10 ! 2.70 2.76

Knowing the: geometrical parameter 0 of the shell and the relations (38. 3),
from the tabular data one can easily construct curves bounding the region of stability
of the shell under the action of combined stresses. Here it is necessary to remem-
ber that in the determination of the critical load the state of the shell before the loss
of stability was taken to be a membrane state and that only one boundary condition
(38. 6) is fulfilled. This latter is the most essential boundary condition, if one is
considering the stability of a cylindrical shell supported by frames which are rigid
against bending in their plane but are only weakly resistant to torsion, where the
skin can slide along the frames, and the segments between the frames are shells of
medium length. If these conditions are not satis:ied, then the simple solution given
above cannot be considered as applicable,

Some attempts are known from literature of obtaining a thoroughly well-founded
solution of the stability problem under pure torsiin, convenient also for shorter
shells. The first solution of this kind was propo:ed by L. Donnell, simultanecusly
with our solution* given above., Taking the displacement components (38, 1)
Donnell also obtains the characteristic equation of the eighth degree in m, Then he
sets

m-l/(mx + n!)l — m‘v;’l‘

and thus replaces equation (38. 2) by an approximate equation of the fourth degree
in m, which is equivalent to neglecting m?2 in conparison with n2,

By further admitting such an error in the bsundary conditions, Donnell manages
to satisfy the boundary conditions of free support or clamping and after a laborious
graphical computation, derives approximate fornwlas for the determination of the
critical shearing stress:

-w|rjle /Lo,
A=—"ELL =46+]/ 78+ (38, 25)

(when the edges are clamped, if L% <6247 — v£%),

A=28+V2610]758 (38, 26)
(when the edges are supported, if L¥<<44¥VT—»- ),
Hence, in the case of shells of medium length, wien # «1, we obtain the formulas

9§ 183F /1t \h/R\K
T T 27) (Z) (w.th clamped edges)

*  See articles /IX, 10/ and /IV. 6/, and also the monograph of S, P. Timoshenko
/0. 18/,
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2 167E [t \W/R Vi (s
il LA = h
=T m) (L) (with supported edges)

The latter differs from our formula for the first approximation (38. 17) only by a
numerical coefficient which is almost 2% smaller than ours.

The validity of these formulas for shells of medium length was also demonstrat-
ed in another way in the work of N. A, Alumyae /1X.13/. In the case of shorter
shells the formulas (38. 25) and (38. 26) cannot be replaced by the simplified formu-
las (38. 25a) and (38. 26a). In that case, however, Donnell's fundamental formulas
also turn out to be dubious, as they are obtained by neglecting m? in comparison
with n2, Apparently, taking this fact into consideration, S. B. Batdorf and M. Stein
found it necessary to study anew the stability of a cylindrical shell under torsion*.
In the case of supported edges they took the deflection function in the form of a
geries

— ns as gmx
w—Z(aqsin r + bqcos R)sin T (38. 27)
gl
each of whose terms satisfies the conditions w= %"—; —0 for x = 0and x = L., where
X

each term of the series for v determined from equation (35. 18) satisfies the boundary
conditions

0=0, T1=0, 4§Tl,ds=o.

For the case of clamping it was assumed that

« . ns e . (38. 28)
= s ns xx _ ~
w_Zo{(a,sln R-}-chos R)[cos Z cos(q+2) L}}
Each term of this series satisfies the conditions
(38. 28)

w=0, 22 =0, u=0, &r.d5=o, § Tiads = 0

for x=0 and x=1L.

Introducing these expressions in (35. 21), we find the corresponding stress function
¥, and thereupon we substitute T:=0%/dx* in (35. 19). We integrate the expres-
sion thus obtained with respect to w by the Bubnov-Galerkin method; we multiply
the left-hand term of the equation by dw and after the substitution of the expression
(38. 27) or (38, 28) we integrate over the shell surface. Then, equating to zero the
coefficients of bda, and db,, we find the infinite system of homogeneous equations
in aq and bg, the consistency condition of which gives the characteristic equation,
determining the relation between the critical stress and the number of waves n on
the circumference. In the work /IX. 12/ one considers the loss of stability under
the action of torsion and axial compression. If the main role is played by torsion,
one can limit oneself to the second approximation and determine the critical shear-
ing stress from the formulas

{ 120020 —¥) )2 Q% (38. 29)
Etwd | 1.40Q, + 0.444Qy

(for supported edges)

* See /IX. 11/ and /1X. 12/.
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120,2(1 — ) 1t (Q1+ Q) (200 (20 + Qi) + V)
{ Eom? } 1.47Q; + 4.17Q, + 22.6Q, (38.30)

(for clamped edges), in which

LY e g 8t Lo
U=y [(rf+w b Fop ),
w= 1'", r=0,1,.,

"R

the value of u, corresponding to the minimal stress, is determined by appropriate
choice,

To the first approximation

B lpe=8""

Besides, it is assumed that the shell is not very short, so that the condition

8<0.1. (38.31)

is satisfied. For comparison we shall give the critical stresses of pure shear,
calculated according to different formulas for a thell, whose geometrical para-
meters lie near the upper limits of the region of variation of #, as determined by

the conditions (38.16), Denoting the values of the quantity A, calculated according

to Donnell's formulas (38. 25), (38, 26), according to our formula (38. 17), and accord-
ing to Batdorf's formulas (38. 29) and (38. 30) by A3, A, Ay, A%, and A} respect-
ively, we find

f A A Am AR A3
0.0512 | 45.0 | 40.1 | 36.9 | 36.7 39.8
0.10 200 | 17 135 | 14.3 16.2

Here it must be noted that the approximate value:. of critical stress found by Batdorf
by the Bubnov-Galerkin method—which is essentially equivalent to the Rayleigh-Ritz
method--are overestimates, since as one increases the number of terms calculated
in the series (38. 27) or (38. 28), one increases the number of possible displacements
of the shell which lead to the loss of stability of i.s equilibrium state. Consequently,
from the table appended it can be seen that alreacy at the boundary of the region

(38. 16), Donnell's formulas give an overestimate of the critical stress by at least
12%. At the boundary of the region (38. 31) this error reaches 20%; therefore, taking
all the aforesaid into consideration, we propose t> determine the critical linear
stress of the membrane equilibrium state under tarsion according to our formulas
(38. 17) or (38. 23), provided that # satisfies the ¢ ondition (38. 31). To evaluate the
approximate formula (38. 23), proposed by us for the combined action of stresses
with dominant torsion, we shall compare the valu: of « according to Table III for

# = 0.0512, 13= 0.42, 1, = 0 with the results of :alculations according to Batdor{'s
formula (38. 29) applied to that case. It turns out that the value of 1), found accord-
ing to the latter formula, is by only 2% smaller than the value found according to
formula (38. 23), although there +v; =< 0.3.
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Chapter X

THE STABILITY AND LARGE DEFLECTIONS OF
CLOSED CYLINDRICAL SHELLS OF CIRCULAR CROSS-SECTION
WITH INITIAL IRREGULARITIES

§ 39. The Concept of Upper and Lower Critical Stresses

In the preceding chapter we have considered the stability of shells having an
ideally cylindrical form, where we assumed that the stressed state of the shell be-
fore the loss of stability may be assumed to be a membrane state. In particular, we
neglected the influence of clamping the shell edges upon the equilibrium state a!
before the loss of stability of that state. In this way we managed to linearize the
equations of neutral equilibrium of the shell not only with respect to the components
of additional displacements, but also with respect to the components of displacements
before the loss of stability. We shall call the critical stresses found in this way the
"upper" critical stresses. Obviously they limit the value of the critical stress from
above, as in reality the shells can have initial deviations from the shape considered,
which facilitate buckling, as well as initial deflections from the load even before the
loss of stability. Besides, we did not consider the possible dynamic character of
the stress, which also promotes the loss of stability of the shell equilibrium. Be-
cause of this, the upper critical stresses o, found theoretically, turn out to be
much greater than the experimental values of critical stress ¢E. The ratios of
of:of under axial compression are shown in Figure 21,

Thick wailed Thin walled

of | cylinders cylinders

Figure 21

A--celluloid, B--steel, C—steel and bronze, D--duraluminum,
E--steel, F--steel, G--bronze, H--steel

Here the closed solid and dotted lines are the limits of the region of location
of the experimental points, taken from the works of various authors* where we ex-
cluded the experiments in which the stability of the shells was known to be lost under
plastic deformations.

Analogous results were arrived at by A. S. Vol'mir /X.8/ and L. R. Ispravnikov
IX.12/.

* See work /X.14./ and the literature cited therein.
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For torsion we see the experimental coefficient, according to Donnell's data,
to be 0.60-0.75; with all-round compression it is, according to Ebner's data, 0.70-
0.75.

In all cases the loss of stability in the region of elastic deformations occurs
discontinuously (b} jumps), where part of the energy is transformed into the energy
of sound waves, heard in the form of a sharp "snap".

One should also note the fact that the form of buckling observed with loss of
stability differs from the sinusoidal waveform on the entire middle surface of the
shell predicted by the linearized theory. According to that theory, the amplitudes
of the buckles directed from the center of curvature of the shell surface are equal
to the amplitudes of the buckles directed toward the center of curvature, while experi-
ments show that the shell "prefers” to buckle inwards. Besides, a noticeable buck-
ling is most often observed only on a portion of the middle surface (Figure 22),

Figure 22

a--buckling under axial compressior, b--under torsion

In order to explain the discrepancy between the results of calculations accord-
ing to the linear theory and those of experiment, it was proposed to make the theory
more exact by considering the phenomena of stabil:ty loss of the shell and its sub-
sequent deformation with the help of the non-linear theory of shells. Here investiga-
tions are possible in three directions. The most i-nportant and difficult of these is
the investigation of large deflections and the stabil ty loss of a shall having initial
irregularities in shape or initial stresses. Particularly important is the determina-
tion of the most unfavorable forms of irregularitie:: which lower the stability of shells,
Equally interesting, in our opinion, is the determiiation of critical stresses while

taking account of the unquestionable fact that the actual state of the shell before the
loss of stability should not be considered as a membrane state even in the case when,
before applying the load, the shell has the ideally correct form. Finally, a question
of no minor importance is the investigation of the state of a shell of ideal shape after
the loss of stability with the aim ol determining the minimal stress which the shell
is capable of supporting after the loss of stability. If such a minimum exists, then
after decreasing the stress to that minimum the bu:kled equilibrium shape becomes
unstable and a so-called collapse occurs, i.e., a discontinuous passage to the initial
membrane form of equilibrium. The stress at which this collapse phenomenon
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occurs will be called the lower critical stress, and the corresponding stress we shall
denote by oy.

For an actual shell
of< of <ol
We devote the following sections to the investigations of the problems indicated,

in the measure in which this is rendered possible by the present state of our know-
ledge about so complex a question.
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§ 40. Lower Critical Stress under wongitudinal Compression,
A Necessary Modification of the Ritz-Timoshenko Method

The problem of determining the lower critical stress in the case of longitudi-
nal compression of a circular cylindrical shell was posed by von Karman and Tsien
/X.1/. However, in view of the fact that these authors, starting from the principle
of virtual displacements and solving the problem according to the Ritz-~Timoshenko
method, varied the total potential energy of the system only with respect to the de-
flection amplitude without considering the variation in length and width of the buckles
formed, the lower critical axial load, found by them, turned out to be a tensile
force, A more well-founded theoretical determ:nation of the lower critical stress
wasg given in the articles /X.2/, /X.3/, and [X.4..

Passing to the exposition of that solution, we assume that besides the longitu-
dinal compressive load, an interior normal pressure p <0 also acts upon the shell.
We shall make use of the notation of § 35. We shall determine the state of a shell
ol, characterized by a finite deflection wi, where for brevity we shall omit the super-
script I, Let the shell have no initial irregularities, By a and b we shall denote
the lengths of half-waves formed by buckling in the axial and circumferential direc-
tions respectively.

m=rnR/a, n=nxR/b, ¢ =m/n. (40.1)

The potential energy of elongation and bending, tie work of the axial force, applied
to the ends of the shell, and the work of the internal pressure acting on the surface
of a whole wave, are defined just as in $§ 28-30.

They are equal, respectively, to the guantities:

3,=é!

o

_ou+ Mo S (A )] axas

'[(ﬂ.,_ﬂ_ s
ax2

ds?

3bend=20ff{ %_{ %}2‘* (40,2)
R

& a a b
du
W,_»:of(rl),_adso s, W,==~46f5prdxds.

The condition of compatibility of deformations (3f.15) and the equation of equilibrium
(35.3) take the forms

O\t Stw sovw (40.3)
AAq,_Et[ ) -2 ;s.——k)}, k=1/R,
=04 dw ¥ dw N Pw 0
Dhdw = ast  ax 26)«'0& s T o Fom P (40.4)
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Substituting in the left-hand member of (40. 3) for w the solution of the linearized
equations of equilibrium as a first approximation,

W, = gor + Yu COS MRX COS NkS,
we find the stress function ¢ in the first approximation and then, introducing w, and

Ynin the right-hand member of (40, 4) we determine w in the second approximation.
Thus, we find an expression of the form

w = go + g cos mhxcos nks + gacos 2mkx + gscos 2nks + (40.5)
+ gecos mkx cos 3nks -+ gs cos 3mkx cos nks.

In article /X.1/, starting from experimental considerations, the expression {40.5)
was taken with

go=g=0. (40.6)

In what follows we shall take, for simplicity, as in article /X.2/,
g21=g (40.7)
Whereby, introducing (40.5) in equation (40,3), we find the particular integral

R
-;==—-Et~"—li[—A— cos I 1B o T4

a? | 16p* R 16 R
+——C—— cos M os W cos 2™ cos T 4 (40.8)
1+ php R R ‘' (1+ 9% R R
G mx Jns H 2mx ansT
6 cos™ cos - ——T—— €05 —— COS = |
+ oo RS R TR e R os R:l ;
Pkt PSS
IR
where
1
A 3’13 n’g? + 48, B = 9 g% nt, C=A4g:gn’-+5n (40.9)

Fe=0=2ngmn’, H= 168302,

To (40.8) one could have added an arbitrary biharmonic function; however there is
no necessity for it, as of all the boundary conditions we shall satisfy only the con=
dition that the mean longitudinal stress be equal to the external stress. Let

the latter be equal in absolute value to Tp. Then, according to formula (40.8)

- ay _
Ti=— D= J=pu (40,10)

As with the buckling of a cylindrical shell under longitudinal compression many
waves appear in the axial as well ag the circumferential direction, and the influence
of the boundary conditions is attenuated already within the limits of one half-wave,
neglecting the latter hardly affects the total potential energy of the shell and the
critical stress, which allows one to solve the problem in the simplified setting indi-
cated. We further find

2\ s
— Etn? (—;— g8+ gg) — Etg,-+ periodic terms

Et?i,—=ft[l;——k1ﬂl—- l(“)2]=pg+vrn-—
ds
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As in the case of an entire shell v should be a pru:riodic function of 8, we have

p,—{—vTa—Eln’(%g’f-}-gi;)—Etgo=-0. (40.11)

According to (40. 2), (40.5), and (40. 10) we find the total energy of the shell acting
on the surface of one wave

I=3t 3 g Wi— W (40.12)
This quantity should be a minimum, therefore g—‘)- =0, or
&
— tgo +vTo/E— pRE — ta? (% g+g)=o
Comparison of this with (40, 11) shows that
pr=—pR go=—nr'(3&+gl) +(— PR+ To)IEL. {40.13)
Eliminating gg we find
=23 AT (RN BpRT,
I = s e ( Et) + o0 (40.14)
t . a *
— % (PR +uTo} (g3 +82) +[Ag}+ Bugl g3+ Cigt 4
+ 262 (Digl + Gigl)jn' + Fungl 2.+ 26 + Higl,
where we have introduced new notations
Ar=(1+89:32, C=I16Hi=16s":(1-Fu?p, Fi=(14C).2,
4u 4pt 1 2
B =Ci 4 — La )= Ut
! l+(]+9p-’)’ e+ O 20— v
Gy = 16 (1 + 1Y
6(1 —v3)
We further set up the equations
93 _03 83 _ 93 _, (40.15)

9,  9g  on de

and form their different combinations just as was done in /X. 2/ for the case p=0;
we introduce the dimensionless quantities

=-#.§,T=—g‘n’,ﬂ=—»%l T’:—%ﬁ-7
[ 2
40,16)
B M= Bim b e (SEE (L (40,
e =Ty B + 1+9u8)+ 9+w’>'

Com14u%, Dy=4Cf(1 + p?) E.=2Cy/D:.

Thus we obtain the following equations relating th=2 critical stress parameters and
the buckle shapes:

[A/32(1 — )4t (D2 — ) + [A12(4 — m,z]{%—a,o,«{»
+(2D: + 1)(%+ 4A:)T—[Dz (A:By — C2)+ Ar(Br — 4)17’}—
— (A (5—4) +38: (L +4an)r - [3aB—cat

+50 + B+ A1 (B:—4) |1+ Az + 441) (Br— 4} =00,

{40.17)
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=14 A D~ 120—v) e+ 4 —B)r + (40, 18)
+(8+ Ba—Ea)y —5}: {0.54 44 —(4:B: — Ca)1} .

— 2 (4 Dt [ s T

1+ w38
+or16+36(TEE) +4 (Qii)]
=[(li’_—“?lf‘;") —a _p.)JY. (40. 19)
w
T5+f=?{mll—m?= '_(8""%‘%)""8“:}' (40. 20)

For a given p* the problem consists in finding the smallest of all the values
of T; for which the system of equations (40. 17)-(40. 20) in the parameters u, g, 7,
and 6 has real roots, satisfying the conditions

>0, 1/8>0.

This problem may be solved by the following semi-inverse method: 1) we take some
value of u“; 2) from (40. 16) we calculate the corresponding values of Az' ... Ey
3) we take a series of values of ¥; 4) from (40. 17) we determine for a given ¥y two
possible values of ¢>0; 5) from (40. 18) we find the corresponding f's; 6) from
the totality of values of v, ¢, and @ we choose those for which the equation (40. 19)
is satisfied; 7) substituting them in (40. 20) we find T§; 8) repeating the calculation
for various u?, we find the smallest Tg for a given p*.

With p* = 0, these very laborious computations were carried out in /x.2/.
It turned out that

min{7Te*)=0.195 for p=0.4. (40. 21)
As is well known, the parameter of upper critical stress is
7o =0.606 (for v=0.3).

Thus, the lower critical stress at which the return "collapse® occurs for an ideal
cylindrical shell is less than one third of the critical stress for the start of the
"snap".

In contrast to the above-stated process of solution of the problem given, von
Karman and Tsien took (in /X. 1), as has been indicated above), as the stationarity
conditions of the total energy in the state of equilibrium, the equations

03 _ 93 _ 03 g
08, ag 0z, !

varying only the looked-for deflection amplitudes of the assumed wavelengths. Then,
utilizing the relations obtained, they found an expression for the stress parameter
T* in terms of the parameters m and n characterizing the buckle shape. Here, one
had in view the minimization of T}; by varying these parameters, without caring
whether the obtained values of 'Il"0 mins ™, 8nd n correspond to the stationary value
of the total energy. Thus, the problem of determining the minimum T} while ob-
serving the minimization condition for the total energy was replaced by the problem
of finding the absolute m1mmum of T#. In the case considered it turned out that
with changing u the gquantity 'I‘0 decreases monotonically, subsequently assuming
negative values as well. Therefore, in the article indicated it had been proposed,
based on experimental data, to take u = 1, as a result of which the value T4 = 0.196
was obtained. It almost coincides with the value (40.21). However, this solution of



von Karman and Tsien may not be considered as theoretically well-founded, since it
had been found in a semi-empirical way.

The necessity of changing the form of the uvsual minimization procedure in the
Ritz-Timoshenko method, as shown in this section, was first pointed out in the
article of Friedrichs /XIII.4/ without, as it seems to us, sufficient explanation.
Some considerations of this question were given in the article /XIIL.7/. They will
be set forth in Chapter XIII, Here we note in addition that the necessity of mini-
mizing the total energy with reapect to the parameters of buckling frequency cannot
only be dispensed with, but also becomes entirely meaningless if the buckle shape
is given by an infinite trigonometric series. However, when we seek the solution
in the form of a trigonometric polynomial with a small number of terms, the prob-
lem of choosing the most suitable wavelengths of the solution sought becomes very
real, and the usual minimization procedure can lead to quite an incorrect result,
To avoid misunderstanding, it is necessary to note that by applying the Ritz-
Timoshenko method according to Lagrange's principle, we admit such displacements
which can occur without violating the geometricalrelations. Inthe case under con-
sideration, this means that 8w, determined from (40.5) with the condition of varying
the quantities gg, ... , g5, m, and n, should be a virtual displacement, In particu-
lar, for a complete cylinder the condition of periodicity of the displacement compo-
nents and their variation with respect to the variable s should be fulfilled, It is
obvious that the latter condition is not satisfied if one considers the buckling of the
entire surface of the shell, But if one assumes that finite deflections extend only
over a part of the gurface, then m and n will no longer be discretely varying quan-
tities, characterized by the integral numbers of the half-waves which are formed,
but will be continuously varying quantities chara:terizing the sizes of the buckles in
the part of the shell under consideration, In thix cage the question of the periodicity
of these or other quantities no longer arises, Uifortunately, however, by approxi-
mating the deflection of a part of the shell by means of a periodic function and not
considering the attenuation of buckling on the reinaining part of the shell, we make
the assumption that the total energy corresponding to this zone of the edge effect is
negligibly small. Consequently, the solutions obtained in this way must be consid-
ered as satisfactory at the present state of the theory only insofar as they still take
into consideration the experimentally observed local character of the shell buckling.

In article /X.4/ Kempner utilizes for the & pproximation to the solution the
expression (40,5} with the condition (40.6), assu:ning that g3 ¥ g3, and finds the
value

min (7,*) =0.182 (for ¢ =0.362), (40.22)

which is only 7% smaller than the value (40,20).

L. Kirste in the article /X,7/ comes to a result almost the same as (40.22),
considering the shell after buckling as a polyhedron freely supported by its ribs on
a cylindrical surface, This assumption is lent rome support by the fact that a cylin-
drical surface can apparently be easily deformed with considerable deflections, if
its middle surface remains close to a developasle surface. In the case of the
transformation of a cylinder into a polyhedron, “his condition is satiafied (with the
exception of angles). Thus we break up the shell into longitudinal strips of length
a and width b, which are considered as compres sed beams on an elastic foundation,
which resists normal displacements, as well as torsion of the beams, The critical
compressive load for such a beam according to 1 formula of article IX.6/ is

p,zz“g+,%4 M, (40.23)

where I is the moment of inertia of the transverse section of the strip,
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% 18 the coefficient of normal reaction of the elastic foundation, M is the reaction
moment,

If the shell is divided into shallow parts, each strip may be considered as
a slightly-bent circular profile. Consequently,

bt

J== 2 pras 1 22— bt
45 12 T20R?

+L
12 /)

where t is the shell thickness, a = b/R.

The elastic foundation favors the circumstance that the longitudinal edges
remain, in view of the action of the neighboring strips, on the cylindrical surface,
Therefore, the strips twist in a transverse direction, where under a sinusoidal de=
formation a transverse unit strip of length b is under the reaction force

d I
Q4w nt s Liid
D—-ds D— w = ds = 2D —w,,
Q‘j oo BT )Py Wesin [l
[0 0

where wq is the deflection vector. Consequently,
x == 207303, D= EN2(1 —+)

Analogously, for the reaction moment we find the expression M = 2Dc/b, where ¢
is some dimensionless coefficient, Substituting these quantities in (40,23) we have
'

] (40.24)

T = b= Exit (__L_
=P 0 i o\ TR | 2at " nt | ab

Minimizing this quantity with respect to a and b, we find

To o —E8 . ™ L (L _‘i_)
0 mia =& 2 30— 120\ n 2xt

For a thin shell u4 = czln2 is much less than unity., For example, for the lower
eritical load, according to (40.22) c2 = 0,017x2; therefore

To, min = 0.187 ££YR. (40,25)

This solution, based on a number of assumptions whose validity cannot be strictly
proved, nevertheless merits attention, as in it one makes the attempt of construct-
ing an elementary theory of the snap phenomenon, starting from the probable physi=
cal picture of that phenomenon.

In conclusion, we direct the reader's attention to the interesting works of

Tsien Hsue-Shen /XIIL5/, /X.20/, and /X,21/, in which he considers the determina~
tion of the critical load taking into account the rigidity of the experimental apparatus,
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§41. Determination of the Reduction Coefficient of the Skin of
a Supported Shell under Axial Compression

As has been shown in §1 of /X. 9/, and alsu in §31 of this work, for a flat
supported plate the exact fulfillment of the conditions of clamping the points of the
8kin has, under axial compression, only a negligible effect on the value of the re-
duction coefficient ¢. After the loss of stability, the cylindrical thin-walled shell
buckles along a wavy surface consisting of a large number of shallow parts, each of
which is almost flat. Therefore it may be assumed that the influence of the edge
effect is also not large in the case under consideration, and that to the first approxi-
mation one can replace with sufficient accuracy the real supported shell by a shell
with relaxation links whose skin is clamped to stiffening ribs only at the points of
intersection of the latter. The skin of such a shell has more possibilities of absorb-
ing the minimum of stress, transmitting the latter to the stiffening ribs, and there-
fore its reduction coefficient must be smaller than the reduction coefficient of the
skin of an actual shell. Consequently, we should obtain a value for ¢ leading to a
safety factor.

To solve the problem set we shall use the Ritz-Timoshenko method, assuming
for the deflection the form*:

® = f, sin ma sin np + f2 sin? ma sin? n3, (41. 1)

where a= 2% B="Ts, m, n are integers, while a and b are the distances between
a

the neighboring transverse and longitudinal ribs respectively.

Then the condition

is satisfied at the stiffening ribs, and the clampirg condition at the strip vertices,
i.e., at a=/{= f=/r (landl' are integers). At the remaining points of the ribs
there is no necessity to satisfy that last condition as ordinarily thin-walled stiffen-
ing ribs resist twisting weakly and hinder the rotation of the skin only slightly.

Introducing (41. 1) in the equation of compat:bility (40. 3), we obtain the stress
function where, without considering the edge effect, we set the arbitrary biharmonic
function equal to (p,y? + p,x?)/2, where p, is the mean axial stress, and p, the
mean annular stress.

*  This buckle shape was assumed by A.S. Vol':nir in work /X. 8/ for a cylindrical
strip. In our opinion, it is more suitable for the case we have considered of a
supported cylindrical shell or a considerable portion thereof.
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Thus we find the expressions for the stresses

L SRPAS. .1 ) N Y i _cosima
o P w{ 4cos_m+f,[ :
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. ¥cens 2macos 2nf 2 sin masin nf 3 sin ma §in 3ap
S cns ma ye| <5 A —
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4 1P (5 4 9)2 ! (938 + 12
4 cos macos np b2 1’ . cos macosnp sin 2ma sin 2nf
o Aeosmacosnp | 4
Sy o e N Tmre AT e J}
5=t
na :

To satisfy the condition of clamping of the skin to the longitudinal ribs at the
strip vertices it is necessary that the mutual axial approach of points of the skin,
which, before the deformation, lie on the intersection of the longitudinal ribs with
two neighboring transverse ribs, be equal to the contraction of the segment of the
longitudinal rib between these transverse ribs, i.e., the condition

a a

g = _1-_233'_7 Py 1 w2 = qe™
50.: dx 5[5:(0:1 Yot ) 2(0;:]]“ e - (41.3)
o [}

for g={= (l-integer),
ghould b. satisfied where < is the mean relative elongation of the longitudinal rib

between ...e neighboring transverse ribs. After simple computations, this condition
yields the equation

Ny T ) I T 3 R
—ap =Tl (a2 (41.4)

The skin is also clamped to the transverse ribs. Consequently, tire condition

"L(ﬂ-vfﬁ‘-‘_ e
LE: dx? Bs’) R 2

should hold, where :3, isthe mean relative elongation of the transverse rib.

b

5?—”115:
as

°

dw \21
oj)st=bE;,

Sl

We shall assume that the tensile and comressive rigidity of the transverse rib
is large, so that one can take 13, == 0, Then, from the condition indicated, it
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follows that

(354 2 ) o 1.9

=:2n?

It should be noted that with the assumed shape of the buckle, the mutual approach

of points of the skin lying on neighboring transserse ribs on the same generator are
functions of . This is explained by the fact tl.at the glven deformation has a period-
equal to twice the length and twice the width of the strip (without considering the in-
fluence of rigid bases). In view of this we should choose from the shell a portion of
length 2a and width 2b. Then the relative axia: displacement of the edge x = 2a in
relation to the edge x = 0 equals

Ay == 23.;': .

Therefore the work of the axial load, applied to these edges, is equal to

b ] . 4ab _ _
Wi *:j?" W= g (17 =) (41.6)
Q
xtab
202

2 (fn’ +- -f:’) n%e

The total energy

3=3 +3y g Wi

is determined from the formulas (40.2), (41.6), (41.1), and (41.2). Setting

* ==p,b’ » b2 ) = &
P £ k R’ nigt’
L“(()‘ N bk 0yt = 32p," (41.7)
P L v PN ’

and eliminating p, by (41.5), we find

EYRE: T " 1)
avmEes 4

+1_‘:3‘.+Eg’ {x:-{- %(V“\-a’)fh*] +

+ %51’52’ — b — et 82 ['« + %’: v+ 5’)] +

+ gy — 64 p2(1 ~ v) b

:‘ﬂ‘fr( il '

where
$L=64 20, ¢y= —6 — 328%: (1 4 B?p,

— . 32 2 417
$2=5 +a‘[2+<v+ TR 9)'}

o= 90+ 1 W, ?4°=(—,‘§:,—,, st ;—E:‘f';f (41.8)
l.:?%-gb‘%-@{f;);ﬁ-m{—,)rkﬁ—lg.
B
X;=M"+;7X;'. X0 =6 4 —2 PRPNECLL ot L)

() 3(1—w)
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The extremum condition of the total energy gives the equations®:

a3, 43,
93 _gp 99
%, to%
or
6 4 gkt — it 24 @ (v ) =0, (41.9)

- b w[fzx, + 24 wq.*]ez-f¢,E.*e,+¢.t,=+ax,e,z— yt=0.  (41.10)

Besides, at the boundary of stability the second variation of total energy should be
zero, i.e., the equation

FTR Y 06,0¢,

a3, 23, 23, >z=0_

gshould be satisfied, which, in view of (41.12), can be written in the form:

3N — 42287 — 6 (N — Yabad 624 2 (X — S’ — $s?) +

; 3 (41.11)
+20a = date) 5+ 07 § 00+ - 8] =0.
Eliminating the quantities {, and g%, from (41, 9)-(41. 11}, we obtain a cubic
equation in &g, which can have one or three real roots. One has to choose that
root among them for which the value of |q1‘| is minimal, and Cl' determined from
the formula (41,9), satisfies the condition:

§2120. (41,12)

Here one has to repeat the calculation, varying the integers m and n, and seek that
form of buckling for which lp’f.has the smallest value, Due to this, the necessary
computations become very tedious. Therefore, we shall carry them out for the
special case when

a=2b. (41,13)
One usually uses oblong strips for which

1.5 < a < 36. (41.14)

We shall assume that the results obtained for the intermediate case (41.13)
will be also applicable in the entire interval (41,14). To simplify the calculations,
instead of the simultaneous solution of the equations (41.10), (41.11) for
;2 and qf we propose to take various positive values of {9 and to determine the
corresponding values of q; and 1/A2 from the equations, which are linear in these
quantities.

Repeating the calculations for different mand n, we find the smallest of the
quantities | p’,"/k*i. The results of these simple but rather tedious calculations are
given in Table IV,

* Note that here, in contradistinction to § 40, the total energy is not minimized
with respect to m and n, as the virtual displacements have to satisfy the geo-
metrical boundary conditions where the boundaries of the considered regions
of variation of the parameters are given.
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Table IV

&7 ’ 109,165 ! 196 "26?

¥ ‘ 19.4 ' 27.3 ' 41.2 | 49 ' 65.7
|

——% 1036(0.32{0.31)0.28/0.2{0.25{0.32(0.31[028)0.24

AN EDDNEK

ANDENDNDE

(&)
[

"
[

From the table we see that, for k* <49, tc the lower critical stress corres-
ponds a buckling with the formation of square wuves, where one half-wave appears
along the strip width, Further, with 49<k*<87, at the lower critical stress each
half-wave occupies the entire length of the strip. With k*>109 the strip width be-
gins to divide into two half-waves, where up to k*<196 square waves are formed
and then there appear oblong pits, buckles, etc. The value of the lower critical
stress is also repeated with a fourfold increase in k*,

The mean axial elongation of the skin is equal to the mean elongation ! of
the longitudinal rib given by (41.4). In our case the mean elongation of the
transverse rib is zero, as is the mean elongaticn of the skin of the transverse rib,
and therefore the formula (41. 5) is valid. In order for the skin to attain this elonga-
tion without buckling, an axial stress

Ti=Etet: (1~ ),

is needed which in view of (41. 4) and (41. 5) is ejual to

Y Y - 1. 113 e &
e T Ty (/216 +e.

Meanwhile, the mean stress in the skin as it bu( kles is p,. Therefore, the reduction
coefficient of the skin under axial compression is

(41. 15)

)

2" A B(l—)

Our problem is to determine the smallest value of this quantity for given
values of the torsion and stress parameters. As; is well known, at the upper critic-
al stress |p,*':k* = 0.6. As had been found abore, at the lower critical stress

p *!:k*>0.24, We shall therefore determine ¢ at various stresses, beginning with
those for which lpl* :k* > 0.24. The correspon ling values of §;and &, have to be
determined from (41.9) and (41.10). But the lattzr equation is cubic in £, There-
fore we shall seek the solution of the problem by assuming the values of A and £,,
and then determining the corresponding g*, and therefore also p# /k* according to
formula (41.10).

Thus we construct the following table of v: lues of ¢ with
k* =616, a=<b, (41.16)

where it turns out that the smallest values of ¢ ire obtained for n= 1,
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Table V

m 8| |o*k) ¥ m 5 |latR [
i 12 0.247 0.586 32 1.085 0.452
0.373 | 0.577 1.420 | v.407
0.568 | 0.615 3 2.092 | 0.383
2 0.38 0.43 4 0.952 0.51
0.45 0.37 1.22 0.42
1 0.66 0.37 2| .69 0.38
1.02 0.40 2.40 0.36
1.88 0,44

For a practical application, however, it is more convenient to express ¢ as
a function of the mean elongation of the longitudinal rib. Therefore the data in the
table are shown in graphical form, where the quantities :7R/t are taken as abscissas.
The necessary computations were made using the relation

— Rt = (1=} p1* e,

As can be seen from the table and from Figure 23, as the axial stress para-
meter increases from its lower limit, the first minimum of the reduction coefficient
is reached at 8= 5 i.e., for the form of buckling with square pits. Then, at
IpI/k*l - 0.38 there is an abrupt passage to the form for which 8 =1, where the re-
duction coefficient abruptly falls from 0.57 to the value 0.43, and then to 0.37. Fur-
ther, it increases to 0.41 as the load increases. At |p /kx| = 1.32, the smaller val-
ue of ¢ begins to correspond to the buckle form with 8= 3/2, and then with 8= 2,
Hence we see that after the "'snap', the apparent strength of the skin increases slow-
ly with a rapid increase of longitudinal rib load, and the decrease of the reduction
coefficient is rapid at first, and then slow,
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Figure 23

The corresponding experimental points of A.S. Vol'mir are given in the graph
of Figure 23. They are close to the calculated points.

In conclusion we note that initially we had been considering a more general
form of buckling than in (41. 1), namely, we had been setting

w = 7, sin masin nf + f2 sin? maasin® a3

Here we do not give the results of these calculations, since it turned out that the
case m, = m, corresponds to the minimum of the lower bound of the stress, as well

as to the minimum of ¢.
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§ 42. Determination of the Lower (‘ritical Load of a Shell
under Uniform Compression*

We shall consider a closed cylindrical shell supported by transverse ribs,
which are rigid against bending and compression and weakly resistant to torsion,
as in § 41. The skin is assumed to be clamped to the tranaverse ribs at the points
8:=0 b/n ..., (2n—1)b/n, where n is the integer to be determined. We shall take
a to be the distance between the neighboringtransverse ribs, p, and p, to be the mean
values of the axial and annular stresses and p to be the external normal pressure,
acting on the lateral surface and on the bottom o the shell, u .—=:—R_.

T

We shall determine the smallest value of F for the form of buckling given by

the deflection

w=f;sin'»‘5-sin’:—"+/ugin"%, (42.1)
a

We calculate the stress function ¥y, the membrane stresses, and the axial displace-
ment A, of the skin points lying on the transverse ribx = a, with respect to the points

lying on the transverse rib x = —a, as in § 41. Then (42.1) gives the expression
— pudl I R L Y i 2 (42, 2)
2‘[ £t +4a'(2 +f’)}'

and the condition that the mean annular elongatioi of the skin and the transverse
ribs be zero leads to the relation

S
1

+vpr. (42.3)

xY3F¢ 2 451
pa= (/, + 7o

The total energy of the shell per unit area of the middle surface is determined in the
cage under consideration from (46, 2) and (40, 12)

Eta®
+EG T 0) + 08 G— 2400 — Mg (2 —v) —
S Pl —w),

T papa

3x=”i3=}'cf+cf[+.+§q,<x+§)}+ (2.4

in the derivation of which, besides (42. 1), (42.2), we used the relation
p=—2p/R (42.5)

and employed the notations

* A more detailed exposition of this problem can be found in the work of
F.S. Isanbaeva /X.10/.
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From the conditions that the total energy be stationary

03,023 _¢

==
a%, % op

we obtain the equations

$G+ 20+ g (1 5 )+ 20 - o =0 (42.7)
[’
(2—¥) g1+ %4 — 9l — () =0 (42. 8)
4 “
q»mT‘+%,—Fq.+ry4pn§—2¢5‘.c,=o. (42.9)
Here Wip o ooves ‘*’SP are the derivatives of ¥, ..., Vg with respect to p.

Thus the problem reduces to the investigation of the interdependence between
the parameters q,, G5;, 5z and j, defined by the equations (42, 7)-(42. 9).

Choosing a parameter # from this system of equations, one can find the small-
est value of |q 1] which will also be the pressure parameter of collapse for that 0.
However, this method of solution of the problem involves very lengthy computations.
Therefore we determine the lower critical load by the less tedious inverse method,
without initially choosing the parameter 9. The essence of the method is the follow-
ing:

1. We determine the quantity L from (42.7) and eliminate it from the re-
maining equations. We thus obtain two linear equations in q; and 6, whose coeffi-
cients are known functions of {,and u;

2. Taking particular values of u, we calculate ¢;, dz,..., ¥n from (42. 6);

3. Taking a set of values of L<{0 for a given u, we find those values of
q, and § for which the ratio of p to the critical pressure pg, determined from the
linear theory, is minimum, We take this p to be the lower bound of critical press-
ure for the given 8, Here tthe condition 7> 0 should be used. The value of pgy
is determined from the formula:

8E =R 7t 1
o ——— L 2 f1—0. 42.10
po'—w“ ')l” N (2 ) Il 09“', ( )

and we find the ratio p/p, from (42.5), (42.10), and (42.6):

— e
— plpe= g2 LI (1 — 0.9%; (42.11)
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4. Repeating the calculations for other vidlues of p, we find the critical pres=
sures for a series of values of §. The calculated results are given in Table VI and
shown in graphical form in Figure 24,

276
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Figure 24
Table VI
- ,u.75 | 0.65 | 0.55 Io.so os |03 | 03
0 ' 0171 ' 0.137 | 0.105 l 0.098 | 0.062 | 0.0¢8 | 0.038
2igo l 082 l a.172 ’ 0.714 ’ oo | oers | osst | 0720

On the basis of Table VI and the graph, we conclude that the smallest of the
ratios p/p, is 0.678 and corresponds to 8 = 0,06, characterizing a class of short
cylindrical shells. With the increase of shell length, 8 decreases and the ratio
p/p_increases, approaching unity. With decrease of the length of the shell, i.e.,
wit}(iJ #>0.062, the ratio p/pO also increases. It would seem that here the influence
of the non-linear factor should increase, but the results given in Table VI show the
contrary. This is possibly explained by the fact that the form of bending chosen
for very short shells does not entirely correspond to reality. From Table VI and
the graph it can be seen that with the increase of 8 from 0.048 to 0.105, the change
in the ratio p/p, is insignificant. Therefore, the lower limit of the critical pressure
for the parameter # in the interval

0.048 <6 <0.105 (42.12)
can be taken to be
p=0.68p,, (42.13)
and for smaller values of # one can use Table VI

Table VI illustrates the dimensions of shells which are included in the given
interval of the parameter 8,

In order to verify the applicability of the in'-erse method, calculations have
been carried out by the direct method for two vali.es of 8 lying at the boundaries
of the interval (42.12). The results of the calcul: tions have shown that the inverse
method does actually give the minimal values of g and p/pg for a given §. In
conclusion we note that from the solution given one does not obtain the exact von
Mises formula for the upper critical pressure derived from the linear theory.
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Table VII

] 0.038 0.048 0.062 0.075 0.021 0.105

Ria for | 4 ¢ 2.00 | 263 | 37 | a3 | 4

Rja for 1,06 1.36 1. 2.2 2.57 2.97

-
w

As is well known, the deformation of the shell before the loss of stability consists

of a membrane part and an edge effect. Usually, the edge effect is neglected, assum-
ing that before the loss of stability the transverse ribs do not resist compression,

i. e., do not take any transverse load. Meanwhile, it is obvious that the shorter the
shell, the greater the load which will be taken by the transverse ribs. After the loss
of stability, the transverse ribs in carry increasingly large loads. In view of this,
assuming the form of the bending given by (42. 1), we consider that at the instant of
the loss of stability f; = 0, but f;+#0, i,e., the shell has an axially symmetric,
barrel-shaped form. We approximate this state by the deflection w = f,sin 2:” B
where the transverse ribs are considered as uncompressed. This assumption as
well as the assumption of non-resistance of the transverse ribs to compressions ig an
idealization of the problem. The real situation lies somewhere in between, There-
fore, both approaches to the problem are useful, To determine the values of f, at
the appearance of the non-axially symmetric buckling, we set ;f: 0 in equation
(48.8). In view of the smallness of 8 and of (42.11), one can set y;+ q, <24.
Consequently

_@=ve 298 g5y 4(2—V) pb
b et 4 fe= 3 wet’

Substituting for f; in formula (43.3) with f, = 0, we find

pz:(i;——k%v)p,or pr==1.43p:(for v=10.3).

According to the membrane theory, p; = 2p;, as i8 well-known.

Thus the mean annular stress in the skin at the moment of stability loss turns
out in this case to be by 70% of that in a slightly compressed web frame. A further
deflection, as can be seen from formula (42. 3), appreciably affects the mean annular
stress, which was to be expected. Meanwhile, by taking |p,|:| P| = 2 = constant,
we would not at all take into account the influence of the web frames even under large
deflections.

Passing to the determination of the upper critical load, pu, let us note that in
the case of shells of medium length the solution given yields the same results as
the von Mises formula. However, in the case of shells of smaller length the ratio
of the upper critical stress (obtained from (42. 7) and (42, 8)) to the upper critical
load (obtained from the membrane theory) is less than unity. As is apparent from
Table VIII, for short shells the value of the upper critical load is approximately 11%
less than the value obtained from the von Mises formula.

This result should not be considered as unexpected, if one takes into account
that from the very beginning we have inward deflections due to which—in the case
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of a short shell—the axial compression must sutstantially reduce the stability of the
shell with respect to transverse pressure,

Table VIII
7 0.4 0.t 0.8
4 0.080 0.151 | 0,187
p/py 0.917 0.603 | 0.893
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§ 43, Determination of the Upper Critical Load of a Cylindrical Shell
with Initial Imperfections under Axial Compression
and Uniform External Pressure

The problem of the influence of initial imperfections of a cylindrical shell on
its stability under axial compression was first investigated in the non-linear theory
by L. Donnell /X.17/. Later, together with K. Yan, he carried out a new, careful
investigation of this problem /X, 4/, using the Papkovich-Ritz method. Here it was
assumed that the deflection w due to the load is similar to the initial deflection w0
and, consequently, for a given load

C=1 } 2w’/ = const. (43.1)

If one uses this relation and omits the index "I in the formulas of § 35, then the con-
dition of compatibility (35. 15) for a circular cylindrical shell can be written in the
form given in /X, 17/

o%w \? SAw I iw _
AAG— Et {C[ axT) ] a—sz]_E EJ}_O' (43,2)

We shall approximate the deflection due to the load by the function

m—at(cos’%f—cos';—$+bcos%f—+ccos:$+d>. (43.3)

The initial imperfection of the shell is characterized by: a) initial deflections
from the ideal form, b) initial strains, ¢) anisotropy of the shell material, etc,
Let us note that one should not neglect the possible effect of the anisotropy of a poly-
crystalline material as it can turn out that for a thin shell, only a small number of
crystals are situated along its thickness. Following Donnell, we shall assume that
all the imperfections indicated act like an initial deflection from the ideal form and
that their total effect is defined by some given deflection wl.

Obviously, the effect of the initial deflection depends not only on its amplitude,
but also on the dimensions of the part of the shell under consideration. For example,
if a rectilinear strip, whose length and thickness are equal respectively to 1 and t,
has an initial deflection a°t approximately given by the sinusoidal form

w® = a° sin wx/lj, (43.4)

then its initial relative curvature is

=% %X
- sin->

deP
o drt )
h=ldx’=a 3 I

The maximum of this quantity, characterizing the effect of the deflection on the de=
formation due to the load for a given value of a9, is proportional to the ratio t2)12,

Consequently,
a® = (Ul=?) (1P, (43.5)
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where U is the roughness factor of the strip, being approximately the same for all
the strips irrespective of their dimensions if their manufacturing technique and the
material are the same,

Analogous considerations also apply to a shell under axial compression, if the
initial bending is defined by a function of the form (43. 3). Here it is necessary to
envisage the possibility of waves being formed along the length as well as along the
circumference of the shell; therefore, if the buckling is equally probable in both
directions, it is worthwhile to take, instead of (43.5), the relation

at = (Urs")(L:Ld8%),
where 1 _and 1, are the corresponding lengths of the half-waves.

But in the majority of cases thin-walled cy inders are constructed by bending
flat sheets, due to which buckling along the axial direction takes place before buck-
ling along the circumference of the cylinder; therefore

a®= (Um0 >0,

It is obvious that 1--q cannot be negative. For the sake of definiteness we
shall assume that q = { Calculations show that this choice hardly affects the final
result, Thus, let

90 et BOX s TS x cos 2 d)
w at(cos z cosR+bcos - —+ ccos P +4a), (43. 6
a® = (U/m?) 11-5 [}5’,’[: = URY/(w Sntfd),

We find ¢ introducing (43, 3) in (43. 2) and then, using (40.2), (43.1) and (43. 6),
we set up the expression for the deformation energy. Here the mean relative short-
ening of the shell & turns out to be

=2+ U, e =00, (43.7)

where ¢ is the modulus of the mean axial stress,

If for given ¢ and UR/t the value of & does rot change, as is the case for the
testing of shells under compression by rigid testir g machines, the work of the ex-
ternal load under variations of the quantities a, b, ¢, u, and e will be zero. Con-
sequently, in that case the total energy of the shell J is equal to its deformation
energy. Determining the parameter d, as in § 40. from the periodicity condition
of the annular displacement v, we set up for the determination of the equilibrium
values of a, b, ¢, p and e the equations:

93 _93_09 03 03 _,
da 6  d¢ an o (43.8)
Solving them simultaneously with equation (43. 7), one can construct a series of
curves for various values of UR/t, which express -he dependence between the quan-
tities of 6, and efe, where o, ,and ¢, are the corr :sponding quantities found

from the linear theory for an ideal shell, In Figure 25, taken from article /X. 4/,
are given graphs for the values of UR/t from 0 to (.4.
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Figure 25

The necessary calculations (for small values of UR/t and for values of 6/aoy
greater than 0.75) were carried out with the help of the equations (43.8). The re-
maining graphs were obtained by minimizing the energy only with respect to the
parameters a and n with fixed values of b = 0.18, ¢ = 0.03, and p= 0.728, taken
without sufficient basis. This could have eliminated the most suitable roots of the
system of non-linear algebraic equations (43.8). Therefore the numerical results
of the investigation with ¢<0.75 o, needs to be verified and made more precise.
But the qualitative aspect of the phenomenon is apprently satisfactorily described
by the solution just considered. As can be seen from Figure 25, for UR/t <0.2
every curve o -—-¢ has a peak p, after which the further mutual approach of the
shell edges can occur without increasing the load. If the shell is thin, then this
peak is reached earlier than the stress in it reaches the plasticity limit ¢ of the
shell material.

In the case of less thin shells, the loss of stability of the shell occurs after
reaching the limit of plasticity, so that, in fact, we are dealing with the investiga-
tion of shell rigidity. In Figure 26 are shown graphs constructed on the basis of the
graphs of Figure 25. Here the solid line is the plot of the peak value ¢/g, against
the quantity UR/t, and the dotted lines show the onset of plastic deformations for
the corresponding values of the quantities UR/t and o, /UE. For example, if the
shell material and the conditions of its preparation are such that ¢ /UE = 5, then
with UR/t =0, 076 the peak stress, equal to 6= 0.5¢,, coincides with the onset of
plastic flow; with 0<UR/t<0.076 the plastic flow starts after the loss of stability
for the corresponding values of o; for thinner shells, UR/t >0.076, a purely elas-
tic buckling occurs at the peak stresses, defined by the points of the solid line to
the right of the point o= 0.5¢,.

Calculations carried out by the above method for the value U = 0.00015 have
led in many cases to values of critical load which are considerably in excess of the
values found experimentally, One of the possible reasons for this discrepancy bet-
ween theory and experiment was indicated above. A second reason can be the fact
that in the solution given we considered only such forms of buckling which are simi-
lar to the initial deflection from the ideal form of the cylindrical shell, which nar-
rows down the class of admissible functions for w and may lead to excessive theore-
tical values for the critical load. In that connection, let us note that not every devia-
tion from the form of a circular cylinder decreases the critical load. For example,
in /0. 13/ it was demonstrated that a sinusoidal corrugation of a cylindrical shell
along the circumferences of the cross-sections considerably increases the stability
of the shell under axial compression, It is obvious that the corrugation of the gene-
rators which produces a middle surface formed by the rotation of a sine curve
should increase the stability of a shell under external normal pressure. A search
for such advantageous initial deviations from the circular cylinder, on the basis of
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the non-linear theory, was made in the article of Tsikal /VI. 13/, which is the first
serious attempt to solve this important problem.

=9 5
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Figure 26

loss of stability under elastic deformations
----- loss of stability starting from the limit of plasticity

Quite recently, Nash has carried out an investigation /X. 15/ on the stability
of a cylindrical shell with initial imperfections under the action of uniform compres-
sion, starting from the equations of compatibility (43. 2) and the expression for the
total energy (40.12) and (40. 2). He approxim:ited the desired deflection by the

function:

(43.9)

ns B /1. =
o-at[sin-;—sln L-+d:\1 cos = ]

which coincides, in fact, with the form of the deflection (42. 1), utilized in /X, 10/
for the determination of the lower critical pressure with uniform compression.

The second term of the right-hand member of this expression represents a
symmetrical buckling toward the center of curvature of the shell, which lowers the
potential energy of the shell which is increased by the trangverse compression,
while the sinusoidal part corresponds to the fcrm of buckling of an ideally shaped
shell, if one takes for n the number of waves :alculated in § 36 from the linear theo-
ry. Since the critical uniform pressure p cal:ulated from the linear theory is great-
er than the experimental values by at most 30-35%, one can hope that the form of
the deflection (43. 9) will turn out to be suitable as an approximation of the buckling
of a shell whose initial deviations from the ideal form are not large (for example,
80<0.5). The form of the initial bending will e assumed to be similar to the deflec-
tion under load, i.e., we shall assume

=0 28 in =X — cos &= (43, 10)
0 at[sin R sin i +c(1 cos = )]

Here one satisfies the geometrical boundary conditionw = Ofor x = 0andx = L,
which in the case under consideration~in coniradistinction to the case of axial com-
pression—-is very important, as the smallest :ritical load corresponds to the for-
mation of buckles and cavities of lengths equa. to the length of the shell. Besides,
in solving the problem one has to satisfy the equation (42. 3) characterizing the con-
dition that the mean annular elongation of the ransverse rib skin be zero. Thus,
one constructs the expression for the total energy 3 as a function of the quantities
p, & n, and d, and minimizes it with respect to the parameters a and d, i.e., one

sets up the equations
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03/3a=0, 33/3d = 0. 43.11)

We shall not give all these computations here, Let us merely point out that it is ad-
visable to determine the roughness factor U® in the case under consideration from
the formula

a®= UP{L: L/ [(Ic+ L) £, (43.12)

where 1 = L is the shell length and 1, = #R/n is the length of a half-wave along the
circumference. Here, on the basis of numerical calculations carried out with the
equations (43.11) for various shells for which experiments were made by Windenburg
-and Trilling /X. 18/, Nash proposed the value U% = 3+ 10™*. The number of circu-
lar waves was to be determined for the first approximation from the theory for
small deflections, Then this value of U° was used to determine the critical hydro-
static pressure for a shell having the following characteristics:

L=203 cm, R=203 em, {=0229 cm, E=2.02-10 kg/em?,
v=0.3.

Although the parameters of the shell were not taken into account in the indicat-
ed processing of the experimental data, the critical pressure found theoretically
turned out to be, for a = 0.15--0.20, as can be seen from Figure 20, approximate-
ly 20 kg/cm?, while in the experiment the shell buckled under a pressure of 19.6
kg/em?2, It is possible that with the assumptions made, such an excessively good
agreement between the theoretical and experimental results 1s to some extent acci-
dental and in other cases the error of a given solution will turn out to be somewhat
larger. Doubt as to the reliability of this solution is also caused by the fact that in
the minimization of the energy functional the equation d3/0n =0 was not used; in-
stead of this the critical pressure was minimized with respect to the parameter n.

Figure 27

However, for uniform compression the shell does not have such a variety of
possible buckle shapes as in the case of axial compression, in which for small de-
flections the ratio u of the frequencies of the buckles along the length and along the
circumference remains undetermined. Therefore Nash's solution can be considered
to be satisfactory as a first approximation.

Unfortunately, in article /X.15/ the author limits himself to the consideration
of the one example indicated above, and does not give any tables or graphs which
facilitate calculation. Besides, the values used for U9 found from a certain set of
experiments, can lead to considerable errors in the calculation of the critical pres-
sure of a specimen prepared under other conditions, We therefore propose to deter-
mine the relationship between the load p and the parameter a® without using the
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expression (43. 12), making use of the express:ons (43. 9) and (43. 10) and setting up
the equations (43.11). Here, one can take n to be the number of waves along the
circumference, using the formulas (36.13), (36.15) and (36.17), in which one has

to set mw= xR/L, )=='; Let p be the pressure correspuading to the maximal deflec-
tion w from the load, p_be the critical pressure determined from (42. 10) for an
ideal shell. We also in%roduce the notations

C°=a°'3-, v=w
R R

Then the results of calculations carried out by F, S. Isanbaeva for various values

of L0 for 8= 0.07 are given in graphical form in Figure 28. As can be seen from
these graphs, to each value of {0< 0.2 there corresponds a pressure maximum,
after reaching which the further increase in deflection occurs with the falling off of
pressure or without a noticeable increase of it This value of pressure may be con-
sidered as the critical pressure for a shell having, atleast on part of its surface,
initial irregularities of the form (43.10). It turns out that in the region of maximum
pressure, the curves t0 = const almost coincide with the curves w? =const, and
therefore, together with the values of {9 the corresponding values of w® are also
shown in the graph. This allows one to determine the peak value of p/p, for a given
initial irregularity w0.
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Note that here one attempts to determine the critical load with a form of the
initial irregularity which is similar to the des.red form of the deflection. For ex-
ample, in the formula (43, 10), instead of a fixed parameter d? characterizing the
shape of the initial irregularity, one fixes the parameter d at the very beginning of
the calculations, although this substitution should only be carried out after setting
up the expression for the total energy and its iinimization with repsect to d.

The error thus introduced into equatione like the second of (43. 11) cannot lead,
in our opinion, to a considerable error in the salue of the critical load, as in the
region of the extremum point of the load vs. dzflection curve, the changes in the
load are slight even for considerable change in the deflection. These considerations
were confirned in the case considered in § 44 by the corresponding calculations of
N. 1. Krivosheev /X.19/.
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§ 44. The Stability of a Shell Having Initial Irregularities under Torsion
To supplement § 38 we shall adopt the following notations:

[=Ljcosh, H=1/467, A=(1 ~ v’)% = (44.1)

t* = 162°A/H? is the dimensionless stress parameter,

p=nRiln, p=sin*#h,

where 1#is angle of inclination of the waves to the generators of the cylinder. We
shall refer the shell to oblique axes x', y', which are connected with the cylindrical
coordinates x, s = y by (26.17). We assume that the x'axis is parallel to the wave
crests which form with the buckling, i.e., in the (26.17) we set

s=y=y p=9
The expressions for the potential energy of the middle surface and the bending energy
in the x', y' coordinates are

1 2mR

1
Fyes —
2Etcos’ff{(h‘nl costd
POV BV g dy
ax’dy’ Ix'3 9y’3 de’ dy’,

i R
3

D
= Ay w)tcos? D
end 2coseff{( y w2 cos?h 4

2 Iw
+20 - ')[(0 oy ] m dy_":ud ay'. (44.2)

The length of the arc described by the end point x = L of the shell rotating about the
end point x = 0, is approximately equal to

L od,
e dyecm- frz e
+ (R )+ 2

ax ds ox

4211 +v)[(

Then the work of the applied load is given by

We= ff{“w') feay THNO )+ (44.3)

+( -+ sin® 3;)(@ +auﬂ>+ w (a' +sin0—)}dx’dy

The total potential energy of the shell is equal to:

3=3u+43, 1 W..
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With a hinged support the following boundary conditione should be satisfied at

=0and x' = 1:
w=0, a—,—.—i—flslnh 'o,—|-[(1——v),ln’8+v| (44.4)
P o, B _L__.
s =0 'a '+sm =—ccosh. (44.5)

Let the ends of the shell be supported by transverse ribs rigid in their plane
and weakly resisting to torsion and bending out of their plane. We shall also assume
that they can be considered as inextensible, i.e.,

o =0. (44.6)
We shall consider a shell with the initial irregularity
m°==fat(sm'5;—sin %‘-{-—fsin"i:l— sin? 22 (44.7)
For an approximate solution of the problem we shall use the Ritz- Papkovich method,
taking the form of the deflection to be

w= f; t(sm "' Y +f sin? — ¥ sin? ";R (44.8)

Thus, just as in § 43, we assume that the effect of the torsion will be to in-
crease irregularity while retaining its form. In the right-hand member of the equa-
tion (26.19), introducing (44.7) and (44. 8) and integrating, we obtain an expression
for Y. The biharmonic part of the solution is taken to be of the form

cos? 9“’" 4 = (xy — xsln °)] (44.9)

cos ¥t

The distances P are determined from (44. 8), which we shall, as before, satisfy
only in the mean, setting

™R

1
[ EZ:RT oydy-=0atx-=03.ndx i

Substituting for vy, and using (44.7) and (44. 8), we obtain

fode-nfe (i) wh1n

where

L=t 2%, ta=fiinlR, b =fotn}R. (44.11)

{44, 8) satisfies the geometrical condition for w = 0, and satisfies the static conditions
(44. 4) and (44. 5) in the mean. This is admissable, as in solving the problem by the
Ritz- Papkovich method, static conditions are no’ the essential boundary conditions.

Using (44. 2), (44.3), (44.7)-(44.11) and the expression obtained for y, we
calculate the quantity
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9 _128n3
y =222

TIRLE =" =28V (fre+Late)+(Petsen+
+f’96+?1}—5(5——25,,)(1+%f*)]/,;(l__—Pj:_:_ (44.12)

where we have set

gre= 2 e L gba o Lty

o AT a2, a, V2 ,,“>: P3=3 4,
?a=%4%9‘(64':;"‘7—)-1212’_’::_{.542?_*_%_ 4>,
"‘=“%‘4PP’“:‘—:KP+4P‘)IM:—32p.u=(1+4p'>|,
““*‘2—3?£l(?+p’)bu~8w'(1+}*’)].
?“=12+4P’+;i{[(p+4v’)’+1ep,n]o.= —

— 64pu2 (1442 (p + 4p1)) -+ A2 (%+PP’+%P'+3P'>.

G-t

v = 2o+ 00+ 4mTbu — 16 1L+ 1)+ 2 b

bu == (R 3 4 p (2ikp), (P=1,2; k==1,213),
Q= {(3 + B2 3P — p (20kp)'P. (44.13)

With the given form of the initial irregularity, the values of the parameters
&, p, and u are fixed, and therefore the expression for the total energy contains
only two arbitrary parameters { and f and the minimum condition for 3 yields the
equations

33,/9f =0, 03./0 =0.
Developing these equations and eliminating t* from the second we obtain

VIT=9 = C 20 [dn /om0t + 3o s+ B 20 (44.14)

(Bex—329)0 /' +3(ps — Bp) 2+ (6ys— 16 9) L
+ @9 — 1698/ —Bes(? —-%{(39:—3?9:)(‘f'+

+(%9, — 2 9 )0 60— 16m)Ef — Lot
—(16f+3j')9.-—8wl}==0. (44.15)

We shall determine the values of ¢ and p by appropriate choice from the minimum
condition of stress, i.e., we shall determine the stress for the most unsatisfactory
form of the initial irregularity. In this formulation, the solution of the system
(44.14), (44.15) can be obtained as follows:

a) we take values of ¢ and p for a particular value of Eo;

b) we calculate Pso-es @, from (44. 13) and introduce it in (44. 14) and
(44.15); thus we obtain t* as a function of §, f and H, and a relation between
the last two;

c¢) we construct curves <*(() for a series of values of H;

d) keeping ¢ fixed, we carry out analogous calculations for other values of p;

e) from the obtained family of curves ¥ () we choose that curve which

253



defines the smallest of the quantities t*: 1%, where t* is the value of the stress
parameter according to the linear theory,

Thus, for a given value of ¢ we select the ccrresponding value of H and the
curve = (1), To reduce the calculations, the values of ¢ and u, corresponding to
a given H, may be taken in the first approximatior from the linear theory. Calcu-
lations show that such a solution leads to an insigrificant error.

The curves A({), obtained in this way, have a form similar to those given in
Figure 29 for H = 400.

He
— ]
AR A —
T D
o eI e
40
‘ (-28,
23 08 19

Figure 29

As can be seen from the graphs, at a certain value of load—-which we shall
call critical- there is a sharp increase in the deflection without noticeable
increase in load. The corresponding values of the initial deflection w0, at which
one reaches the critical load, are given in Table IX,

Table IX
o H=46.6 1 H=05.4 o H=400 1 H=2080
0.07 0.115 0.05 0,085 0.067 0.17 0.015 0.074
0.14 0.244 0.1 0.101 0.1 0.267 0,03 0.147
0.2 0,38 0.2 0.384 0.15 0.435 0.086 0.306

Figure 30 gives a comparison of the critical values of A with the values of the
quantities A, found from (38.17) in the linear theo-y, and with the experimental data
given in the work of Donnell /IX.10/.

From the graph it is obvious that almost all the experimental points lie between
the theoretical curves constructed for the values ¢f wO = 0 and w0 = 0.4t.

The critical values of the quantity A for shells whose middle surface has an
initial irregularity W?nax< 0.25t, can be determine¢d from the formula

A=A (1 - 06w /¢,
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Figure 30

We shall further assume that the middle surface has a symmetrical irregularity of
the form

w“:futsinﬂ;: sln";'—.‘,:: ) (44.16)

Under the action of a load such an irregularity will increase, retaining a symmetri-
cal form until this equilibrium form becomes unstable and the appearance of a new
unsymmetrical form of equilibrium becomes likely, To determine the critical
load corresponding to this point, we shall represent the deflection by the expres~
sion

5 rx’

r ’ ny’
w =f.tsin’%slnf}:— +ﬁtsin-—l—sin2—2¢k, (44.17)

We consider that fy is an infinitesimal quantity, and therefore in the expression for
the total energy we omit all terms containing f; in powers higher than the second.
Thus, analogously to the preceding, we obtain the relations

Vo(i— ¢ 5 i

-i(—‘,‘;—”f‘=m’+n(2nq¢z-}~v’s)+*ﬁ(? S 2 se) (44.18)

-+ 5o (s 12) + 91, ,
3 9
71’(4'?1 -5 ?2) + 71’{3 (401 -+ 94) — & o2 — 5 P8 } +
3

-+ [4710 {2091 + 94 — % 7o — TP 6) +

R ORRE 1B
— Lo (e 5+ ) F et +o) =0, (44.19)
where

n:fgth/R, 'r]o=fol!l"'//—\). (44.20)
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The critical load is determined from (44.18) and (44,19) in the same way as from the
system (44.14) and (44.15). The difference consists only in that here one does not
construct every curve <*(7}, but 1y is determined immediately. Here, from the
values of 1* found for a given g, we select the one : or which the ratio r"/t"\'

takes the minimal value.

Calculations show that a symmetrical irregularity has little effect on the value
of the critical load. For example, for the amplitude of the irregularity 0.5t(n, = 0.4),
the critical value of A is reduced by 9% for H = 95.4, and for H = 2,080 with an
amplitude =2t by 9%.

It is probable that, among the various irregularities which occur in actual
shells, there also exist those which can lower the apparent strength even more than
the irregularities considered above.

Here we have confined ourselves to an exposition of the problem as given in
the article of N.1. Krivesheev /X.19/.

In the article of Nash /X. 15/ it is mentioned that the problem under considera-
tion had been tackled in the Doctor's thesis of Loo, an excerpt of which has recently

been published /X.16/. Judging from this short exposition, the form of deflection
taken by Loo is, in our notation of §§ 38, 44,

'w=at[sln'i%‘-)sinff + 4 cosg—-"[‘f-—l)], 0L xLL

with an initial irregularity

w° =wa‘/a.

Varying the total energy of the shell with respect to deflection parameters a and d,
Loo obtains two algebraic equations in 1, a, d, n, and y, where y is the tangent of
the angle of inclination of the wave. In what follows, the author agsumes that

- Renie R\ (44.21)
m= = 012( )" y =732 )
instead of looking for the values of n and y which co-respond to the most unsatisfact-
ory form of w°,
The values of m and vy, close to the quantities taken by Loo, were found by
Donnell for sufficiently long shells by neglecting v2 in comparison with unity. Loo
makes use of (44. 21) also for short shells, as a result of which he obtains excessive-

ly large values for the upper critical stress in comparison with Donnell's solution,
which in turn gives somewhat excessive values of t;, as shown in § 38.

Having thus simplified the problem Loo derives after some calculations the
approximate relation:

== ._,4[a., (%)“I ' (44.22)

where t, is the critical stress according to the linear theory.

Further, there is an attempt (following Donnell) to relate a0 with the most
probable form of buckling of shells, assuming that
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m L2
,,n.,u‘.[ x+m)7] :

Finally, choosing for UO the arbitrary value Uy = 5- 10"5, Loo obtains the required
relation,

In view of the above, we believe that Loo's "solution' given here should be
taken with caution.
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§ 45. Non-Linear Theory of the Edge Effe:t in a Cylindrical Shell.
The Influence of an Initial Edge Deformation upon the
Stability of a Shell under Axial Compression

We shall consider a shell having initial deviations w® from the cylindrical sur-
face and corresponding initial stresses and moments , ., M{2. The additional
deflection due to the applied load will be denoted by w, and the function of the addition-
al stresses by .

Let
w=wbt o', ="+ Ti=TPHTT, (45.1)
where wb, T';, ... are quantities determined from :he membrane theory. For a

cylindrical shell referred to the lines of curvature, in equations (20, 19) and (20. 21)
one should set

k1|=_rl‘u_ﬂ_d’_w l=_0w‘_8!m

! e’ ? dxds  dxds (45.2)
P 2P Cw o ol O
= e s VT e VT Tag

where y 0 and w0 satisfy the equations (20.8) and (2).10):

040 %0 O 0 GNP oS
AA o 7 IV 9 e m— —— - fd)
D a5t 0x) +2 Oxdc dxds  dx* \ as® k) 0, (45.3)
ow’ N
0 ol .
y E:[ MS M( 305", ) (45.4)

Besides, neglecting the changes in curvature of the membrane deflection, we shall
set Pw/dx? =dFuw/0x>.

Thus, we shall obtain the following equations for the determination of ¢k and
wk

Daser — (T3 + r.")%’—;—‘}r (TP 78 70) a’—:} -

—2(Tht T 2L 2T T4 T P Tik-

 po - 45.5
—(r2 4+ Tz‘): — (724 Tz+T2)a’ =0, ¢ )

Abk — otk ~~'w°
by Et[(:has>+ d.zds 616:

N & Bu?  Fur\  Fox ﬂ’m"
dxt N\ dast as? 25 e

+

(45.6)

Let the moment part of the deformation due t» the load and the initial deform-
ation be characterized by gquantities which do not depend on s, or else change very
slowly with s, but change rapidly as functions of x, Then

Fwe 0’0’

a7 <55

" TR T, MM s ddxt,
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Here the equations (45. 3) and (45. 4) can be replaced by the approximate equations

N ™ g DY Y o

dxt de ’ dx¢ dxt
Thus, setting
x =872, 16wt =LV 3 (1 —A)/ER, (45.7)
we obtain the equations
Lo S o 4t P -
<7 Ts = Etkw®, & 4 4att? = Q. (45. 8)
Analogously we find
[ « _ Cepmx T - _
-dem Ti=Ethw*, TV = T, (45. 9)
ahee 22 (B diwd - 202 = T
g 1 4oty (d;z +dt' +4otws =0, 4p7e? 4D’ (45.10)

The middle term of the latter equation characterizes the influence of the membrane
part of the deformation on the edge effect. Its presence shows that the superposi-

tion of the solutions of the membrane theory and the usual linear theory of the edge
effect ia not admissable in the given case in view of the nonlinearity of the original
equations.

For example, let the shell be of the shape of an ideal circular cylinder before
clamping the skin to the transverse ribs. Let the inner radius of the skin exceed
the outer radius of the transverse rib by the quantity %, We shall assume that
when the ends of the skin are clamped to the transverse ribs (for example, by means
of closely spaced rivets) this gap is reduced, due to which the skin gets an initial
symmetric deflection w0 equal to £Ot at the transverse ribs, and corresponding
initia) stresses. We shall determine the influence of this initial deformation on the
deformed state of the shell under the action of compressive axial stresses
T = const.

Of course, the initial deflection considered is an edge effect, From (45. 8)
we find for it the expression

0° = A; ch wk cos wf + By sh ok sin ef,

where A, and B, are constants determined by the initial conditions

w = — [, dufidt =0 for €==+4-1. (45.11)

If the shell is not very short, then che=sheo. In the zone of the edge £ = 1 we can
also set shwi<chet. Thus, after slight calculations, we obtain the expression
of w° for this portion of the shell, satisfying the boundary conditions (45.11):

w® = — fo chot{sine(l — i) 4-cose(l —§)che. (45.12)

An analogous expression for the second half of the shell is obtained by replacing
E by — & in (45.12).

Further, for & >0 we find the approximate expression for the integral of the
equation (45.10)
w* = ch ek (A2 cos P& 4 Basin PE) — w?,
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where

a=ol1—p% p=o VT34l (45.13)

For %=1 the conditions w = 0, dw/d = 0 have to be satisfied. Calculating the
corresponding A; and B, we obtain

e ..(¢/o+wb)°-c’-'§[%smp(1 — 84 cosf(l —s;]um. (45.14)

Since
TPme 0, thusved = — of,
. . R (45.15)
Ti=T7=Ew/vR, w®= TR/EL.
We determine the annular stress from (45. 9). We set
T = nEs, (45. 186)

where 7 is a numerical factor. For the lower critical stress it is approximately
equal to 0.19. Introducing this expression into (45. 10) and taking (45. 7) into con-
sideration, we find

b g VI, (45.17)

According to (45. 8), (45.9), and (45. 14) the total circumferential stress ig
T34 TS — Eth (tf° + wb) ‘—:;if-[% sin B(1 — &)+ cosp(l — e)]. (45.18)
In the linear theory of the edge effect
T4 T = — Ef cos wksinw(l — &)+ cos ®(l —&)}:cha.

The difference between these values is large unless y.z is small.

We shall calculate the mean circumferential stress along the shell length:
1
(ri+ r;),=f(r:+ TS) di = —2Eth (+f° + b ) o/(a* + ).
o
Denoting by p_ the mean pressure given by (45. 13) we find

(T4 T2 =p.R=Etk (tf* + o®) V1 = o/, (45.19)

In solving the problem one can assume, as a first approximation, that a non-
uniform pressure of mean density p. has the same effect on the shell stability as a
uniformly distributed pressure pc, as in both cates, in the anticipated form of buck-
ling, it is essential that one half-wave be formed along the shell length.

Consequently, if p.>px, where pj is the critical external pressure given by
(36. 22), the shell can lose its stability under the combined action of the axial com-
pression T and the pressure referred to, arising as a result of the initial deforma-
tion.

According to formulas (45. 15) and (45.18), w° = vnt. Equating p. and and
n Px

using (36.17), we shall obtain from (45. 19) and (56. 22) equations for the determins-
tion of the critical stress:
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n=2.15(f+mV 1 —qV30T —¥) 8, (45. 20}
n=1.2050%: {(1—v)""[1 — 1.B1 (1 —N8]}, (45.21)

where
L= TipR.

For given £° and 0 one can find A and the critical value of n from these equa-
tions,

let, for example, %= 0.19, w=10, or 8= 0.0464. From equations (45. 20)
and (45, 21) we find A= 4.1, £2=0.51.

Thus, in the case under consideration, with £ > 0.51 the shell loses stability
when the axial compressive stress reaches its lower critical value.

The above considerations can explain, in the relevant cases, the phenomenon

of premature loss of stability of actual cylindrical shells having an initial symmetric-
al deformation of the edge type.
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Chapter XI
LARGE DEFLECTIONS OF SHALLOW CYLINDRICAL STRIPS

§ 46. The Stability and Large Deflections of a Long Cylindrical Plate
under a Uniformly Distributed Transverse Load*

We shall consider, within the limits of the theory of shallow shells, the exact
solution of the problem of equilibrium of a circular cylindrical plate under the action
of an external normal pressure p = const>0. The results thus obtained will apply
to shallow beams if one replaces the flexural rigidity D = Et3/12(1—- v by EI

For very long plates with uniform boundary conditions along the length all the
quantities characterizing the deformation depend only on the coordinate s, For the
sake of brevity we shall introduce simpler notations as follows instead of those of
§ 35:

T; = T is the membrane stress along the arc, b is the strip width, & = 2s/b,
u‘2 = v is the displacement along the tangent to the arc before deformation, w! = w
is the normal displacement, Wo is the initial ir:-egularity,

Let a dot over a letter denote differentiation with respect to £,
According to equation (35. 2)

T = const = — ¢, = Eze/(1-v2) (46.1)
After introducing the dimensionless quantities
g=2R =ty R
w A . (46.2)
%R .
V=" 4 R’
we shall obtain from (35. 1) and (35. 3) the equations
WHu(— 14+ W+ W) 9=0 (46.3)
~—§}L’~'/lz"-—:v+ W+%W’+ Ww,. (46. 4)

The retaining of the quadratic term in the expret sion (46. 4) will allow us to consider,
in the following, larger displacements as well.

If the edges are hinged, one has to satisfy the conditions:

(46. 5)
w=0 w=0, v=0 for E=+1.

* See article /XI.1/. For a sinusoidal beam tlis question has been
investigated in detail in /XI. 2/.
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The general solution of the equation (46. 3) for wy = 0 has the form

e. ¢ N q 3
W=——F—:cospi~ H—:slan—f—c.E-ru-(Ffl)?. (46.6)

Determining cg, c3, ¢4, c5 from the boundary conditions (46.5), we obtain

qu(cospi__*_i“_ivl L 0=1- % (46.7)

pteosp 2 p? 2

Introducing this expression in (46,4), integrating and utilizing the boundary condi-
tions for v, we shall obtain a relation between the dimensionless parameter of the
external load q and the dimensionless parameter of the compressive stress u in
the form

1 4 1 \2
P M@ —BQ () =0 (46.8)
Here
1 25 [T 2,5, _ g 11
A1=E—-F(gv+°-5 e +P_” BI—T 3 (46.9)

We shall denote the deflection parameter at the vertex of the panel vertex by (.
According to (46. 4)

r;:Q(l_':_cf’,s,t_l . (46.10)

picos u 2

The relations (46. 8) and (46. 10) allow one to investigate the behavior of an infinitely
long shallow panel with hinged edges. For any given value of the curvature parameter
k*, the critical values of the parameter of the external load q, and q, (pressures of
snapping and of collapse) can be found from (46. 8), from (46. 10) we can obtain the
corresponding values of the deflection parameter {;, {, at the strip vertices.

When the curvature parameter k* is sufficiently large, by neglecting in equation

(46, 8) the term 4 p?/3k*2 we shall obtain

Q=0, (46.11)
or

—;—A.Q=BI. (46.12)

The relation (46, 11) corresponds to the membrane state of the strip before the
snapping. In fact, from (46.11) and (46. 2) we have ¢c1 = pR.

The equation (46, 12) describes the behavior of the strip after snapping. As
the calculations show, for k*>70 one may use the equations (46.11) and (46.12)
which do not depend on k* instead of (46. 8).
For the following investigation we shall write equation (46. 8) in the form
Q=(Bi V&) : Aii b= B —2 Atia™. (46.13)
From (46. 8) and (46, 9) it is seen that for p=2 %; , ... the quantity Q has
multiple roots equal to zero. The corresponding values of the pressure
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parameter will be: ¢ = » «ss » However, for a given k* only those values of the
parameter u for which 41> have a real meaning,

According to (46,13) to every given pu correspond two values of Q, and conse~
uently, two values of q. One of these values of q corresponds to the state before
the buckling. Depending on the value of the curvature parameter k* two cases can
occur;

1. Al = 0 with < #2. Then there is only one multiple root, corresponding
to the value of p obtained from the condition A,= 0. In that case, the snapping
phenomenon does not exist, and the curves of (46, 8) and (46. 10), which, for brevity,
will be denoted by F(g, p) =0, ®(qg, {) =0, will have the forms snown in Figure 31.

2, Ay =0 with +>=/2  Inthat case there are two multiple roots, one of
which corresponds to the value u = n/2, and the second to the value obtained from
the condition A = 0.

9 Kr < 4,45 ¢
92 > 9y

3
[H]

oyl

» < -5

Figure 31

In this case the dependence curves F(q, p) =0, ®(q, {) =0, have the forms
shown in Figure 32. The strip loses its stability vith snapping.

9 S4SCHCRas 3
04g:44,
9 9 r\
92 92 . ¢
g I —H =

Figure 32

The maximum of the compressive stress parameter u which is possible in
strips with hinged edges will be the one for which Al >0 when &*-— oo

As A1 > 0 always holds, the value of g found {rom the equation By = 0 will be
the greatest. It is n=~4.685.

The smallest value of k* for which snapping occurs is determined by the con-
dition 4;>0 at r—=/2. Hence, #*>445.
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From Figure 32 it is apparent that snapping is possible only when the compres-
sion parameter § becomes greater than x/2. The value of 4 = x/2 corresponds to
the Eulerian compressive force for a strip of length b with hinged ends. As a matter
of fact, from (46. 2), for p=w/2, ¢, =xD/b3=T,.

Determining the critical values of q; and q, from (46. 13) is equivalent to de-
termining the maxima and minima of the curve F(q, # ) = 0. Owing to the tedious
calculations involved in expressing q in terms of 4, we find the quantities q; and
q2 for various values of k* by constructing curves through the points. The quantities
p,; and p, thus obtained may be expressed as

40

e =kt (46.14)

L= (k‘) RB

So far we have confined ourselves to the consideration of only the symmetric
form of strip buckling, whereas the general expression (46. 6) for the deflection
function also contains an asymmetrical term. For hinged rectilinear edges the
boundary conditions (46. §) have to be satisfied, from which it follows that for all
##=® c;=c4 =0, and the symmetric form of the deflection is the only possible
one. Forp=n=x, along with the symmetrical form of the deflection, an asymmetrical
form also becomes possible. This testifies to the fact that parts of the curves

F(g, =0, ®{g. =0 (46.15)

correspond, for the values p>x, to unstable states of equilibrium, and when de-
termining the loading capacity of the strip they should be dropped.

Asymmetrical buckling appears only in strips whose curvature parameters
satisfy the condition 4,>0 for p==_ Calculations give the value k* > 9.04.

Thus, the process of buckling of a strip with a large curvature parameter is
described by the solution obtained in the following way, Initially, with increase of
the load, the panel deflections are symmetrical; when the compressive stress para-
meter p reaches the value =, an asymmetrical buckling occurs (by jump) to the
equilibrium state which, for large deflections, will again by symmetrical.

Taking into account the asymmetrical form of buckling, we obtain a table for
the values of a;and «,for hinged edges.

Table X
& ‘ 4.45 10 20 30 50 l 70 l ©
o | 247 | 58t | vo8 | 955 | o I 9.80 ’ 9.87
,, II 2.47 J—o.n I—a.97 ,—4.4& —462 |—480 1—4.7.:
Let the boundary conditions of the problem have the form
W=20 Ww==%10 V,:a_—p.i M forf==1.
2 3 = (46. 16)

The coefficients 8§, y, and B characterize the flexibility of the supports along the
normal, with respect to rotation and in the tangent plane respectively.
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Applying the boundary conditions (46. 16), (46.4), and (46, 6), we find
— QU tncespt , & (+ypeosw | (46.17)
w= QL £ 02t Fa+9),

%AQz_BQ-}—C:O, (46. 18)

where

i O+ U+ -1 cosp 2040
A= — . .
3 + 2sintp + 2 ¥ 8in pt ’
Ly 2+® D4y P S
B _..—-”l e " cgy; € 3 N(l-}-p) (46. 19)

These relaticns allow us to consider the influence of the various deviations from the
conditions of rigid and hinged edges on the carrying capacity of the strip. As an
illustration, let us see this for a strip with a curvature parameter k* = 40.

A. Let the supports be flexible in the normal direction. In that case, 3==y=0,

3 £0.

Let us find the minimum of the abzolute valie of d for which snapping no long-
er occurs, This may be determined with sufficie 1t accuracy from the condition

B*—2AC L0, (46. 20)

if one sets u = 3.2. Itis § =—7.91, Here, ift = 1 mm, then w(s = £ b/2) = 0.415 mm,
and the value of the load parameter of the buckling drops from q,(8 = 0) = 19.14 to
q,(8 =—17.91)= a2,

Hence it can be seen that the loading capacity of the strip decreases when, un-
der load, the supports undergo an additional displacement from the center of gravity.

B. Let the supports be flexible in the tangent plane. In that case, §=v=0
p£0

The coefficient B can take various values depending on the degree of flexibility
of the supports. We shall find the value of § for shich the strip with k* = 40 no
longer snaps. This value of B will be obtained with sufficient accuracy from equation
(46.20) withu = 3.2. Itis f= 10.77,

Consequently, at f =11 the buckling load becomes q, = 7!2, instead of 19.14.
Since in shallow strips and beams there is a cons.derable thrust even for small ex-
ternal pressures, then, due to the flexibility of tte supports in the tangent plane, the
buckling load can turn out to be less than half of i:s value for the case of rigid fasten-
ing.

C. Let the supports be flexible with respect to rotation. In that case, §=p=0,

T#0.

Calculations show that for ¥ = -1,0536 the panel snapping does not occur and the
loading capacity is reduced from g, = 19.14to g, = x2.

Thus, the impossibility of realizing ideal brundary conditions of hinged or
rigid fastening in experiment and in actual struct ires can be one of the reasons for
the fact that the observed critical loads sometime 8 turn out to be much smaller than
the theoretical ones.
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Another reason for this state of affairs is the influence of the initial irregulari-
ties on the behavior of the strip.

Our analysis of the exact solution of the equilibrium equation for the rigid fast-
ening of the panel edges having symmetrical irregularities of the form w,= — atcas atf2
and w,= — at(l 4+ cos &%) or an asymmetrical irregularity of the form w,= —atsinxt/2
shows that for a = 1 such irregularities reduce the snap pressure by 10-30%, while
* with increasing k* the influence of the irregularities decreases. At the same time,
these irregularities increase somewhat the collapse pressure p,.

Of considerably greater influence is an antisymmetric irregularity of the form

W, = —atsinnni (46. 21)

In Table XI are given the results of calculations of the corresponding pressure
pa(r]'ameter of the snapping q,! for a= 1, and alsu, for comparison, the values of
q,” for a=0,

Table XI
k* 4 60 80 100
q,° 19,16 19.7%8 15.8% 20,0
gt n=1 w3z § 1218 | 1268 § 12.60
qiin=1):9° .94 0.615 0.63% 0.69
qiln=2) 9.5 11.07 12.27 13.07
¢ in :Q;Aq,”—_’ 0.49 0.59 0.6! 0.65

Calculations show that for n>2, the guantity q, begins to increase rapidly, ap-
proaching q °. This indicates that the antisymmetrical irregularity is less danger-
ous for a high frequency (n = 3; 4; 5) than for a low frequency (n = 1; 2).

The results of calculating q, for certain values of k* for the irregularities
(46.21) with n = 1 and a= 1 are given in Table XIIL.

Table XII
e [ 40 | 0 j w |
& {488 | 4@ j Ry 1 18
T ‘ 966 | 8.25 | 142 | 7.02
PR ‘ 1,98 | 190 | 1 | 17

From Table XII it can be seen that the antisymmetrical irregularity increases
the lower critical load, and its influence on q, turns out to be just as strong as on
qi. Therefore, von Karman's assertion about the weak influence of initial imperfec-
tions of shape on the value of the lower critical load, expressed by him in /XL 3/, is
erroneous. An antisymmetrical irregularity can, by lowering the upper critical
load and raising the lower one, eliminate the possibility of snapping for a certain
amplitude.
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$47. The Convergence of Galerkin's Method for the Solution of the Problem of $46

In view of the fact that an exact solution of non-linear problems of the theory -
of shells is possible only in very rare cases, it iz interesting to clarify the effective-
ness of using approximate methods for the solution of such problems by comparing
the approximate solutions with the exact ones. We shall carry out this comparison
on the example of the problem of $46, whose approximate solution will be found by
Galerkin's mathod /XI. 4/, Let .

mnt
W=2 Cm COS <> m=1, 3, .., (47.1)

mre)

where Ll, 4 2+ o«» are arbitrary parameters, yet to be determined.
Of course, the boundary contiitions (46.5) for W are satisfied here,

Introducing (47.1) in equation (46.4), weob:ainV, and setting V = 0 for =1,
we obtain the relation

2. _ 5B \ Y S g, \
u a Z( 1y o s‘k’Z(mcm)a “r.2)
|

where
m=1,375,17 ..;{=2for m=1,5, 9, ...;
(=1 for m=3, 7, 11, ....

Introducing (47.1) in equation (46.3) and integrating the latter by Galerkin's method
we shall obtain an infinite system of equations:

me \4 4 mx \2 4
—a () R S (Y w1y Ly, (47.3)
where m and ] take the same values as in (47.2)., The relations (47.2), (47,3) aliow
one to determine the symmetric deformation of the strip with any degree of accuracy.
In (46.3) and (46.4), substituting the quantities W + Wy, V+Vy, and p244?
for W, V, and uz, where Wy, Vy, and 8! are infinitesimal increments, we obtain
the equations of neutral equilibrium
W +01W, 83 (% —1)=0, (47.4)
— 43 = V. + W, + WW,. (47.5)

As is well known, for very shallow strips the smallest value of the critical
load corresponds to the loss of stability in asymmetrical form with the formation of
two half-waves; therefore we set

We =G, sin =t. (47.6)
Substituting in (47.5), we obtain V,. and setting '/ - 0 for t =21, we obtain: im0,

Here, from equation (47.4) it follows that ul'==w, i.e,, the asymmetric form
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of buckling appears when p becomes equal to =x. The exact solution gives us
the same value for p.

Substituting p =~ in the equations (47.2) and (47.3) one can determine the cri-
tical values of the deflection parameter { ,, {. , and the corresponding values

of the load parameter qp, qg for various k* (see Table XI11),

Table XIII

W=
- W= ={,cosnt/2 + Exact
=, cos n§J2 L Lcos % solution

q 9.085 9.08 9.08
20

' — 4,15 —3.87 -39

A 9.810 9.806 l 9.800
70

a | —48713 —4.698 \ — 4,630

As can be seen from the table, the solution by Galerkin's method almost coin-
cides, in the second approximation, with the exact solution, whereas the first approxi-
mation gives a larger value for q, and a smaller value for q;.

For strips with rigidly fixed edges we take the expression for the deflection in
the form of the series

W= i(,.[l 4 (= Dtcosnnt], n=12, ... (47.7)

me=l

Proceeding analogously to the above, we shall obtain

,,s=_%‘*’_25,_§ﬂ_:’222nz<,-, (47.8)

] Al
g=ut+ %(m:)’ fw? — (a%)}) 2n . (47.9)
Let
nt
W, =Cusinwicos ——. {47.10)

According to (47,5) we again obtain #2==0, whereupon, integrating equation (47.4)
by the Galerkin method, we find p?*=2023. The exact solution gives the value of
u¥ = 20.25.

Setting p?=20.23 in equations {47. 8) and (41. 9), we obtain relations for the
determination of the critical values of the deflection parameters {m, in
the corresponding values of the load parameter q, ¢,. Calculations for
k* = 100 yield:

1-e approximation g, = 20.09; g,=—0.38;
2-¢ . g, ==20.08; g@= 36T
3-e . g, =20.08; = 404
4-e . g, = 20.08; gp= 413
Exact solution g, =20.03; gy = 422
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Thus, in the case of fixed edges as wel., the second approximation coincides,
within the limits of accuracy of the calculations, with the exact solution for q,, and
the fourth approximation gives almost the exsct value of q,. This case {llustrates
the process of approximating the exact value of qz from below in a particularly con-
venient way.

The calculations listed show that the apolication of the Galerkin method enables
one to find with sufficient accuracy the upper critical load as well as the lower one.”
For the determination of the lower critical load one requires a higher approximation.

We do not have a formal proof of the convergence of Galerkin's method for the
solution of non-linear problems. However, it can be explained why, in using this
method, we approach monotonically the real value of the upper critical load from
above,andthe real value of the lower critical load from below. As a matter of fact,
when the condition of compatibility is satisfied, Galerkin's method follows from the
principle of virtual displacements. Accordin to this, by taking an increased num-
ber of terms from the series which approximi.tes the deflection, we increase the
number of degrees of freedom of the system. This facilitates the snapping of the
strip, as well as the return collapse. Here i is necessary to note that in our investi-
gation we assume the completeness of the sys.em of approximating functions.

The essential nature of that condition is confirmed by actual experience in
solving non-linear problems. For example, in determining the lower critical value
of the axial compressive stress for a complete cylindrical shell (works /X.41/ and
the same form of deflection was taken as was defined by the formulas (40. 5) and
(40. 6). But the first of these works an additional constraint was imposed on the
possible amplitudes by the assumption that g2 = g3. Owing to this, the complete
system of approximating functions

Ro, B1COSmkxcosnks, g.cos 'mkx, gacus 2nks, ...

was turned into an incomplete system of functions
&o, £1COSmkx cos nks, ga(cos: mkx <+ cos 2nks), ...,

which led to an increased value (by 7%) for the lower critical stress (40. 20), instead
of the value (40, 22), found by Kempner by var;ing the total energy with respect to
all the parameters go, g,, g2, and gs3.

It should also be noted that the successive approximations to the actual expres-
sion for the deflection, obtained by including i1 the expression of the approximating
function new terms of the series of the comple e system of functions with the corres-
ponding new deflection parameters, give monotc nically varying approximations to the
lower critical stress only when the chosen defl2ction function for the first approxima-
tion characterizes sufficiently well the actual ehape of the deformation. For example,
our calculations have shown that if in solving the problem of § 46 one approximates
the deflection function in the first approximaticn by a sine-form with three half-
waves along the strip width, then the pressure vs. deflection graph obtained is situ-
ated much higher than the actual graph, and wih increasing deflection the pressure
increases monotonically. Later on, with the irtroduction in the expression for de-
flection of terms which give sine-form with twc and one half-waves along the strip
width, one begins to obtain graphs with lower aad upper extremum points, and then,
by passing to the consideration of a sine-form ‘vith 4, 5, ... half-waves, the extrem-
um points from above and from below, corresponding to the upper and the lower
critical value of pressure, begin to approach euch other monotonically.



§ 48. Cylindrical Strip Supported on Ribs, Flexible in the Tangent Plane,
under the Action of Normal Pressure

We shall consider the problem of determining the large deflections of a rec-
tangular cylindrical strip, freely supported at the edges on ribs /X1.6/, Here it it
agsumed that the transverse sections of these ribs have a very large moment of in-
ertia about the axis passing through the center of gravity of the section parallel to
the plate surface, and a very small one about the axis perpendicular to the plate sur-
face. We shall therefore consider that the ribs do not allow the plate edges to be
displaced in the direction perpendicular to its surface, but do not at all hinder dis-
placements in directions tangential to its surface and perpendicular to the rib.

It is also assumed that the ribs are inextensible, For the longitudinal ribs of
the strip, at s = 0 and 8 = b, the following boundary conditions should be directly
patisfied

S s T A P =y
= (Sh v St)=0, 2= X =0. (48.1)

The first of these conditions signifies that the strip next to the rib, as well as
the rib itself, does notexpand in the direction of the rib, The second condition signi-
fies that the rib does not resist bending in the direction tangential to the strip.

From the preceding two equations it follows that with 8 =0 and s = b

=% —o (48.2)

 og

Analogously, one can obtain the boundary conditions satisfied by the function
¥ in the neighborhood of the transverse ribs
2 _ M

=-1-=0 for x=0, x=a.
dxt o5t *

(48.3)

In view of the free support of the strip on the ribs, further conditions have to
be satisfied which ensure the absence of bending moments at the strip edges:

w="2 =0 forux=0 x=a
9x?

w=2"_-_0 fors=0, s=b. (48.4)
Ist

We shall seek the approximation to the deflection function in the form

N N
mex neg

sin == (48.5)

W= Cma®rn, Wma=SiN

me=i A

It is obvious that every term of that series satisfies the conditions (48.4). Intro
ducing this expression for w into the equation (40. 3) we shall obtain
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h= = B Gt (S - ) ¢

mapq

Et do
+ 72 Con g -
-

We shall solve this equation by the Four.er method. We shall utilize the re-
presentation in the form of a double Fourier series of the function

(48.8)

Py 'py Py, Py 4
B T T Tais T QM W (48.7)

3
and its odd continuation beyond the region 0<x<a, 0<s< b wherek, 1= 1, 2, 3,...

SRy 0%, 'y, Pw,
M i A PR N | .
Amnpq fj( dx? ds? 0 ds Ox6s )w“dde‘ (48 8)

Here and in what follows the integrals are taken over the entire surface of the strip.
Introducing (48. 7) in (48. 6) we obtain

rs
AMY = - Ft - A’n‘npv Wet Cmn Cpg —
mapgRi
{48.9)
Et mr 2
?zcmn( = /) Wwmn .
We shall seek the solution of this equation in thte form of the series
¢ =X oum., (48.10)

ko

each of whose terms satisfies the boundary cor.ditions (48.1) and (48.3), and the co-
efficients ay) satisfy the system of equations

[(%)'*' (%),]’“M =k 2_:; ArnpgCmnCra — % (%:—).‘C" ) (48.11)

mapq

Here the quantities C_, Cn C, are zero if at least one of the indices
k, ..., q exceeds N. Further, introducing the expressions (48. 5) and (48. 10) in
(40. 4), multiplying both members of the obtain:d equation by wy and integrating
over the entire surface of the strip, we arrive, after some simple calculations, at
the system of equations:

-D [(%’)' + (%)'T Cut 2 4o Cnn — ﬂ"r’;:;;' AL
Aima

(48.12)

. Swy Pw,, 2 My 0wy,
AL C8ma 9 OO T Wrdxds
Tt ds1 ax? dx0s ¢ X308 " +

1 / =r\2 4 e
+?(_a q,,zﬁyjpw,,dxda, L, 8=12, ..., N.

Integrating by parts and taking into accourt that at the strip edges the func-
tions wyg are zero, we have
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ff 5;::‘ .o':' Wrpdxds w=

gPumy ;| Fw
- mn @ L¥ma T —oma dxd
f f on (5oas et 2550 Tox + 50 r)x’ ) 5
[ f D T, dxds =

— - Pty 0y | Pwgn d’u,.,) dieds.
—ffmu(dx'ds‘w"+ 2 dx1ds s = dxr ¥

Consequently,
Fllmn = A;’,.‘ + AZnN Amnu + Ar‘y’mn =

=ffw“ dwmn dzw,, +02°’M Pwys Qg’i"ﬂﬂ O"UJ,,)dxd&

ast d0x? Jxt 997 dxds 0xds

Introducing the latter and the expressions (48.11) in (48,12), we obtain for the
coefficients C,, the system of equations

-y [(i'i)' + ("—SYJ:C,, - Z 16£¢ Elymn Auby) CmnCap Cu
a b L4 et aw*
na

2 SEL Bl (Bl CuCmn _ Et(wrfeprC

abR {(knla) + (Ix)b)’)? R|(xr[a)’ 4 (ns/OP]

m (48.13)
4Ft -r Alsape CraCoq j j‘

Yy () 2 oy + (slOPE pion dxds

(r, s=1,2 ..., N).

In order to obtain simpler formulas we shall consider the first approximation
to the solution, when N = 1, In that case, assuming that the pressure is distributed
uniformly over the whole surface of the strip, after some simple calculations and
the introduction of the notations

k¥ =bYRt, H = bY8R, 1= b¥a?, (48.14)
we find the following dependence of the pressure on the deflection at the center of
the strip:

= Etb3? T Cn
7= un (1+~:)’{ ()( > ( (48.15)
— 1‘167’_ ¢ | Lo *
[3 4% 0+ )5
Here
1 1 ) 1 N}
A(T)=(‘+l)’2 (& + 0y cRt TR (48.16)

We give the values of this quantity for some values of the elongation parameter
of the strip:

bla=1 '0.75 l 0.5 | 0.3

A=0.46% 0.47 l 040 ’ 05
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To solve the problem in the second approximation we shall take the deflection
function in the form

L oomx LA . LES 1)
® = Cy sin ——;—smT—}—C.; sin 2 Sin == (48,17)

Here, from (48.13) we find two equations: for the determination of the deflection
coefficients C,, and C,, .

2§ The coefficients of :hese equations contain the quantities -
Amnpg » calculated from (48. 8), and also the quantities:
E/’n!mpq = Af;‘npq + ‘4:>{7mn = B;IJ'M = Bz’ll"l =
. 8 kimnpq [‘2 {mig? 4 n’p?) — (/«'2 — ml— pl) {8 —n3— ﬂ'\] nd
(8~ m! — pIP — 4mipt (B — 7 — @) — dnig?) 2t (48.18)

& {=1,3,...im n p g=1 or 3.

Utilizing the notation (48.14) and introducing th: new notations

U= Cu/f, Liy= Cos/Cui, p* = pbYyEM,

(48.19)
we shall obtain a system of two cubic equations in { and {13:
Clon tanlin - aal? + ot +
- (’(ﬂsl + o0l + Gnﬂfa) Ll -+ E(c“ - %y ﬁ) = -- 1,621p",
§ o4 (48.20)
C (313 + 30l + 9237 + 30l 3) + Cless - 333%05 + s:al2) —kBL +
2 (o0 oA Ytae = — 0,540, (48.21)
The values of the coefficients o) for some y are listed in Table XIV*.
Table X1V

N

[~

2 39,35 |—135.7 | 487 ~75.29 |51.92 | —85.02 {172.9 |223.0
1 14,92 |- 38.10 | i117.9 —48.72 132 00 1 —31 Y1 | 56.28 | 3568
0.5 | 2497 |— 6,20 | 35.63 |--10.63] 5120 | — 5.052] B.643| 13.94
0.3 | 0.472|— 1.256] 3,833 .- 2614/ 0 8726 — .850| 1.462| 10 60|

t
oy =30y, l I3 = A

ag =305

%1 l %3 on Sa

| -

! %a | %3 ‘ %3 Sn 1 I3 ' 53
a i
40,96 1032 ~ 43,01 | 345.8 6.35 1507 6.059
16 388 -15.96 | 112.6 3.84 892 0.64
f

2
1
0.5 2.56 7734 | — 25260 17.29 | 0.2805 763.2 | 0.0467
0.3 0.436 | 18,81 | — 0.430 2.924 | 0.0376 737 0.060627

Eliminating p* from equations (48.20) and (48.21) we find a quadratic equation
in {, whose coefficients are polynomials of at most the third degree in {,,

Taking various values of { ;3 and determir
{ from (48. 21),
p*.

ing the corresponding values of
one can construct a graph of th: change of the pressure parameter

Example, Let y= b2/a2 = 1/4,

* See article /IX.8/, which has a misprint in formula (3.2),
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The values of relative deflection Clo, CZO at the center of the plate, the upper
critical pressure parameter p} and of the lower critical pressure parameter P3 .,
calculated from the first approximation formula in M. A. Koltunov's article /XI. 7/
and from our formula, are given in Table XV.

Table XV
)
a/b k* 52 20 pf p2*
First approximation
according to /XI.7/... 2 40 2,124 5.380 | 44.8 20.2
From (48.15) .......... 2 40 2,30 3.50 45.8 37.86
From /XL.7/ .......... 2 80 3.41 11,64 | 256 -127
From (48.15) .......... 2 80 3.67 9,83 262 54
From (48.21) ,......... 2 80 3.59 9.92 253 68

As can be seen, the results calculated according to the formula of article
/X1.7/ and from (48. 15) differ considerably. Both of these formulas were derived
taking one and the same form of the deflection for the same boundary conditions, but
the first of them, in contradistinction to the second, was obtained by integrating the
conditions of compatibility by Galerkin's method. Let us note that in the example
considered, the difference in the value of the upper critical pressure, determined
from these formulas, is not large. The collapse pressure (and also the strip deform-
ation after the snapping)is determined incorrectly, by Koltunov's method in the first
approximation, Hence it follows that in using the Bubnov-Galerkin method for the
integration of the equations of compatibility, it is necessary to determine the strain
function more exactly by taking for it an expression which contains some varying
parameters,

The critical pressures are determined by us in the second approximation only
for the value of the curvature parameter k* = 80. From Table XV we see that the
second approximation reduces by 3.5% the value of the upper critical pressure and
increases by almost 25% the lower critical pressure in comparison with the first
approximation according to (48. 15).
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§$49. Influence of an Asymmetrical Irregt larity on the Deformation of
A Shallow Strip under a Traasverse Load

We shall consider the deflection of a strip with hinged edges. In that case,
the exact fulfillment of the geometrical boundary conditions is of considerable im-
portance

U=p=n= () for x=as2, s=:*ps2. (49.1)

Besides, the static conditions

P il

d—,’~+vd—s,=0 for x = *a/2;

e dw b (49.2)
—E-*-aa—‘;—-o for S-—I?

should be satisfied,

Taking into account the geometrical charactar of the boundary conditions, we
shall solve the problem in the displacement compunents

=, u=o, @ =,

We obtain the corresponding equilibrium equations from the equations {35.3),
(35.4), and (35, 5), dropping the index I and using the formulas (35, 1).

The conditions (49, 1) and (49. 2) are satisfied if

@ = (W cos yi + @i sin ) cos xi; X =rc/a, y =xs/b;
#==(41c0s y1 + 41 cos 3yy + ul sin 2y, - - ¥ sin 4p,) sin 2x, + (48.3)
—+ (u2cos ys + uk sin 2y,) sin 4xy;
= (01 5in 231 + vasindy, 4 vs sin 6y, + of cos n+ricos3y+  (49,4)
+ v3 08 551) cos x1 + (01 5in 2¥1 4- 04 sin 4y, +
-+ 03 cos 31 + v4 cos 3y.) cos 3. (45.5)

Starting from the principle of virtual displac :ments, we shall apply the general-
ized variational equation (22. 5)* in order to solve the problem.

In the case under consideration, the contour integrals in (22,5) are equal to
Zero, as in varying the quantities Uj, ..+, Wi on taie contour, everywhere d=mdv=
=tiw =0 everywhere. The fact that the integral taken over the surface of the strip
is zero gives the equations

JfGraao [f(-Fpmems an
21 %]

* BSee the derivation of the equation for a cylindrical shell in /0. 6/,
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[ s+ 55) T (4 22

e | Pw (49.7)
—n(GE+e ) e

a7, 37,5\ dw 9Ty ; 875 )dw}a
(9 4 T\ (00u L T ANt dmdo = 0.
(dx + s /dx 0x + ds / ds

The first two of these equations are the equations of Galerkin's method applied
to the equilibrium equations (35. 4) and (35. 5), and the equation (49. 7) differs from
the Galerkin equation for the equilibrium equation (35. 3) by the presence of the
additional underlined terms. On exact solution of the problem these additional terms
vanish. For an approximate solution, as the calculations show, they are small in
comparison with the remaining terms, and therefore we shall also integrate the
third one of the equilibrium equations by Galerkin's method.

Thus, subﬁtituting the expressions (49.4), (49.5) and equating the coefficients
of buy, ..., 5W] to zero*. we obtain a system of 18 equations in 18 parameters
Ugy ooes WY Because of the orthogonality of the functions by which one ap-
proximates the divsﬁlacement components u and v, the system of equations for expres=
sing u;, u?, Vi, in terms of w,, wil divides into two independent systems, one
of which contains only the parameters of the symmetrical deformation, and the other
only the parameters of asymmetrical deformation, where v, , vH are easily expressed
in terms of ui, ull Even though this simplifies considera lylihe succeeding compu-
tations, they remain sufficiently tedious, and therefore we shall carry out the further
analysis of the solution for the special case where

ba ="/ (49.8)
Let the strip have an initial irregularity
o == Lot sin (2rs/b). (49.9)
We also introduce the notations
g =pROLD; C=wilt; U=ul/t. (49.10)
Then we obtain the fundamental relations

1 (305 25890 | S8, 8533 Yp
—:’-q=~<2.428k + BB P B L4 to)t

k‘
(49.11)
—25.00¢t — ZE s 338 7 — 7858k
(5.4390" + 5.998%0) G2 4 (1.415" + 1.638L,) Ch* | 62.08La8" +
+ 18,40 4+ (0.003614°% 4 48.445 +9.164)¢" = 0. (49.12)
With =0, * #0 , from the last equation we find the relation:
18.400" == — 5.4407 — 1.41Ck* — 0.003614*" — 9.16 > 0. {49.13)

Hence it follows that the asymmetrical form of stability loss of the panel takes place
at k* >10,22,

Solving (48, 13) for various values of k*, we shall find the states in which the
asymmetrical deflection component is present or absent respectively, and

mEEee .. —.——-—

* See article /XL.5/,

2717



from equation (49.11) in which {=(*=0, we shall obtain the corresponding
critical values of the load parameter, To illustrate the process of solution we shall
first consider a strip with a small curvature parameter k* = 20, Here, utilizing
the condition dq/d = 0, we shall find for symmetrical deformation the pressures of

bang and collapse q, = 18,56, q,= 0,323, and the corresponding deflection para-
meters

G o= — 1.343; {1 = — 4.007.

The dependence of q vs. | is given by the solid line in Figure 33,

L4
2}
Y
L] ) <_-','
w44
A
5 T
7
0 | 5 -
Figure 33

Dependence of the load parameter
on the deflection parameter at the
strip vertex (A =0,5; kx = 20)

Solving (49, 13) with k*=20, we find that it takes place when 0,408 < - { < 4,776.
This inequality determines the existence region of the asymmetrical deformation
component. Setting { = -0.408 and { = - 4,776 we find from (49. 11) the critical
values of the pressure parameter for which the as’mmetrical deformation is res-
pectively present and absent: q}f =10, 26, q*z“l = 5.€68. The dependence of q { for
the case (>-0.408 and (< -4,776 coincides with the preceding, and in the
segment 0.408< - (< 4.776 is shown by a dashed :ine.

With ;5 # 0, by taking various values of {H we find from (49.12)the corres-
ponding values of {, after which we determine from (49, 11) the value of the pressure
parameter q. The dependence curve q vs. { thus obtained for a strip with the initial
irregularity {,= -1 i6 shown by the dash-and dot line in Figure 33,

As an example of a shallow strip with an upward slope, we shall consider a
wirip with the curvature parameter k* = 100,

Carrying out calculations analogous to the preceding, we obtain for the case
a) for the symmetrical deformation of an ideal strip
Ci=—6.358, Lo=—20.39, yi=427 4, 2= —1057; (49, 13b)

b) with the presence or absence of asymmet ‘ical deformation:

== — 0329, L= —2559, q4=47.38, g¢j=167.5.

The dependence of curves q vs. { for these ci.ses and for the case Co= =1 are
glven in Figure 34 by a solid, dashed, and dot-and- dash line respectively,
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Dependence of the load parameter
on the deflection parameter at the
strip vertex (8= 0.5; k* = 100)

The calculations given show that the asymmetrical form of stability loss with
hinged edges appears already in shallow strips with k* > 10,22, Therefore, when
the curvature parameter k* > 10, the determination of the critical load for the
symmetrical form of stability loss along one half-wave is of no practical interest,

This should be remembered all the more, since the initial shape of the strip
is not ideally symmetrical, and the deformation of the strip occurs as a simultaneous
development of the symmetrical and asymmetrical components of deflection, With
an initial asymmetry in the shape of the middle surface of the strip, it becomes,in
the first stage of loading, more flexible to bending, due to which the deflection ex-
ceeds by several times the deflection of an ideal circular strip with the very same
load (see Figure 34). In that case, the phenomenon of stability loss does not take
place in the usual sense, but from a practical point of view, one can take as the
critical load that for which either the deflection begins to grow fast without con-
siderable increase in load, or else becomes inadmissibly large.
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§50. Bending of a Shallow Cylindrical Strin with Freely-Supported Edges
under a Uniform Trans-erse Load

As an example of the application of separate integration by Galerkin method
of the equation of compatibility (35. 15), and cfthe equation of equilibrium (35. 3),
we shall consider the deflection of a strip unaer the action of a uniform transverse
load with freely-supported edges*.

The boundary conditions

A ) dxds xt
for x= % (50.1)
= 0= Ty, 0=
. ax? T 9xds " s O=w
b
fo S—+'2-

are satisfied exactly, provided

$=t (1 cos ZE) (14 ros )+ (50.2)

+'¥:(l - cosi’i‘—)(l + cos 2—:'3)4-

+%(l+cos?“7x)(l — €OS 4—':),
w—mcos%—cos"f-}-mcos?:—cos%f+w.cosa"7‘cos "-’-’—S, (50.3)

Here ¥ ,...w, are the parameters being varied and which are to be determined.
1 3

Introducing (50, 2) and (50, 3) in the equat:ons (35. 3) and (35.15) and integrat-
ing them by the Galerkin method, we obtain the following fundamental relations
Fi{M 2+ 0+ 1+ 2 - Wa=
= — 0.0625M (26} + 923 + 963 + 6C:La + 6CiLs + 166:Ca) -
— 0.1643&*A(0.1111C, 4 0.05220; -+ 0.20Cs),
ofi+ £ 32k + 24 (4124 1)Y=
= 0.06254 (— U — 96 — 20,5 — 905 + 25%46a) -
— 0.6572£%12(0.0222%, 4+ 0.0( 440, — 0.1429%,),
2ufi L fi[2M 432 7+ 4=
== 0,0625M (— & — 903 490G — ks 4 200eKs) —

— 0.6572k*N*(0.0222%, - 0.)159C: 4 0.040C,). (50.4)

p* = — 5.50 A% 4 1) & + N7 (17.5: 3fs + 140354 + 2.807f3) +

4 240.3403 { fi (5, 1.50 + 1.5%) + 72(0.5¢, 4 056 — 2.25C4) =+~
+ /4 (050 4 0.5% - - 2.25%)}. (50.5)
M| f1(5.50 + 165 +13.5%) + f2(0 8750 + 0.5C; —6.9370) +

+ Fa(— 1187C 4 1.128%, -~ 4.187%,)] -~ £*A*(0.1168f, + 009341, -+

+ 0.1368f3) — 0.0229 (1 + 1) — 0.0687 (M +9)%¢; = 0. (50.6)
M f; (5.50 + 13.5%: + 150)) 4 f2 (— 1.187C — 41870+ 1.125%) +
4 £2{0.8750, — 6.9370: + 0 5Ca)| 4 A (0.4672fs — 1.0679/2+
+0.3271f3) — 002293 + 1)* T —{ L0687 (903 4 1)3 L3 = 0. (50.7)
Here we have set

fi=Y EB, U= f, where i=1, 2, 3;
k* = b2:Rt is the parameter of curvature; p* = pb4:Et4 is the load parameter.

* The investigation given below was carried out at our request by
M.S. Kornishyn and is being published here for the first time.
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If we consider fu f;, &, % to be zero, we shall obtain the solution of the
problem to the first approximation

PP=—5.50(1+ 1)C, — 0.320207%, — 6.5797ah*C} 30,10}, (50.8)
where
‘A‘
S T S (50.9)
In the case of a flat plate k* = 0,
P*=—550(A4 1) — 30.10aC} (50.10)

In the following are given the calculated results for some particular values of the
parameters A and k*,

A. Strip with A= 0,5, We shall first consider the solution in the first approxi-
mation. Setting A= 0.5 in (50.8), we obtain

P = — B 60 -~ 0.005434 ¢, - 0111544 — 0.5)0¢] . (50.11)

Calculations show that for strips with k*< 55,2 the stresses grow monotonically,
with increasing deflections, and with «* >'55.2 the snapping takes place.

In particular, for k* = 80, and the collapse at p3= 36. 14 and §1,1 = —3,45,
and the exhaustion at p; = 36.14 and tl g = —8.23,

If, instead of (50.2) we take for the stress function another expression,
namely,

X

¥ =) Ymacos " cos Y.
, a 2

Jeeey 4,0 = 1-3;5'“- (50 12)

m,

as is done in /XI. 6/ and /XI.10/, in the first approximation we shall obtain for a
similar strip the corresponding values P} 5 = 262; p3 (o} = 256.

Note that according to (50, 12) the stresses T, and T,are zero at the contour,
and the shearing stress T, js zero in the mean.

Thus, for our case, the critical load would turn out to be one-fourth as much.
This is explained by the difference in the boundary conditions which, on the face of
it, does not seem to be so considerable. Actually, in the works cited, the strip had
been more rigid, with edges supported by incompressible ribs which are easily bent
in their plane (see §48).

Here, we do not compare the lower critical loads corresponding to consider-
ably larger deflections, as for their determination the first and even the second ap-
proximations are not always sufficient,

Using the concrete example of a strip with A= 0,5 and k* = 80, we shall exhibit
the influence of higher order approximations on the value of the upper and lower
critical loads,

On the basis of equations (50.4)-(50.7), with Cl = --3.5, we obtain Cp=-0.05,
U3 = +0.026, p* = 67,07, Here the deflection at the center of the strip is {,=—-3.524,

If in these equations one sets G=(=0 , retaining all three terms for vy,
then for the same deflection at the center we obtain p* = 68,51,
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From equation (50,11) with {;mZ = —3,724 we have p* = 64,16,

From a comparison of the obtained results it is apparent that in determining
the upper critical load for a strip with A= 0.5 and k* = 80 one can limit oneself to
the first approximation for the siress function, as well as for the deflection funce
tion. Such a conclusion ig even more valid with respect to strips with > <05 and
k*< 80, as the convergence of the process then improves, N

Setting {; = —8, from equations (50.4)-(50.7) we find: tg = —0.18, {3 =-1.10,
p* = 31,57, (o = —9.28,

If in (50.4)-{50,7) one sets {;={=0 , thenfor { =bL = -9.28 we shall ob- - .
tain p* = 45,64.

From equation (50.11) with  &={ = --9,28 we have p* = 40,71,
Consequently, in the region of the lower ¢ ritical load the influence of the higher
approximations on the stress function as well as on the deflection function is

substantial,

B. The case of a square strip and plate. From (50. 8), for a square strip we
have:

p* = — 22.01¢; — 0.04003%™%, — 0.82254% - 3.764} . (50.13)

On the basis of this relation, we find tha: the snapping occurs in the strip when
k* > 33,5. For k¥ = 50, we find for the critical state:

fi1==— 2.07and p} = 109.90, (2= — 5.22 andp; == 51.48.

Utilizing the relations (50.,4)-(50.7) we cenvince ourselves that with k* = 50,
one can limit onself, in the case of a square panel, to the first approximation for
the upper as well as for the lower critical loads.

As the value of the curvature parameter k* increases, the convergence of the
process deteriorates,

For example, for k* = 80, from (50.13) ve have [j 3= --2.77 and
pl = 345.6, Uy = —8.89 and pj = --85.32,

Setting {; = --8, from the equations (50. 1)-(50.7) we find {g = —0.68,
t3 = 0.22, p* = +5.50, {¢ = —8.46, From (50.13) with {1 = {c = —8.46 we have
p* = —19,13,

Thus the load has changed its sign where, as the calculations show, the funda-
mental role is now played by {,.

We shall consider the influence of the hiiher approximations, in particular of
the term with {9, on the upper critical load.

In (50.4)-(50,7) setting {g = 0 and §; = --3, we find
7y = — 0.40, {= — 3.40, p* = 290.39.
From (50.13) with ¢ == =--3,40 we oodtain p* = 333,08,

Consequently, the correction of the second approximation is also considerable
in the region of the upper critical loa --about 13 %.
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For a square plate the equations (50. 5) {50.7) take the form:

—p*=22.01§, 4 3.82§,* 4 203.05 5,5 4+ 129.28{, ;2 +30.08%,%,.
0.0316Cs + 6.868 &+~ 0.0843 (,3 4 7.421 7y + (50.14)
+ 0.9396 1,222 +4.108,,2 == 0.

The results calculated according to this formula are close to the results found
by another method in /XI. 11/, as can be seen from Table XVI.

Table XVI1
=4+ 2%, -1 -3 —4
PEIXLIY 26.7 169.5 346.2
P*(50.14) 28.7 174.9 47,8

The method used in /XI. 11/ is universal and has allowed its authors to investi-
gate a series of important cases of fastening of the plate edges, but its utilization
requires very cumbersome calculations.

In those cases when at the contour static conditions are given for the stress
function, as is the case with our problem, separate integration of the original
equations by the Galerkin method gives the fastest results, which are also entirely
satisfactory.
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§ 51. Experimental Investigation ¢f the Bending of Strips
under a Transvers2 Load

We know of only one work, /XI. 8/, devoted to the testing of thin cylindrical
strips under transverse loads in which 60 specimens with A=2 =1;2;3 were
prepared from st. 2 and D16T* and were shaped to values of th® curvature para-
meter 25 < k* < 125, The testing was carried outina special set-up; the loading
was done by compressed air and was measured by a mercury manometer with a
mirrored millimeter scale; the deflections at a series of points were measured by
indicators with scale division of 0.01 mm; the ceformations were measured by wire
resistances.

In preparing such shallow cylindrical strips with the ratio tR~1:1,000 it is
very difficult to preserve the regular geometrical shape. The specimens therefore
had initial irregularities.

Some of the specimens were tested under hinged edges, others under rigid
fastening. Together with strips attached rigidly and hinged at all four edges, strips
with free curvilinear edges were also tested.

1]

n
L
=

Figure 35

I—theoretical curve of the values of a; with asym-
metrical buckling; II-—-experimental curve of the
values of a, taking into account the deviation of
the boundary conditions of the samples tested from
the conditions of ideal hinged fastening; III--theo-
retical curves of the values of a,with asymmetri-
cal buckling

As shown by experiment, the strip defle« tions can be monotonic or be accom-
panied by a snapping, depending on the value o the curvature parameter k¥, and
also of the quantity A In the latter case, the ioad, having reached some maximal

* Translator's note; Russian symbols.
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value p |, starts to drop suddenly to the value p, with simultaneous increase of the
deflection. Such a form of stability loss is characteristic for strips with a curvature
parameter k* >40 and A>2,

Below are given graphs of the theoretical values of a; and a, from formula
(46. 14), and the values of a; obtained from the experiment for long strips with rigid
and hinged fastenings of straight edges.
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Figure 36

I--theoretical curve of values of «;with asym-
metrical buckling; II-—-experimental curve of
values of e, ; Ill--theoretical curve of values of a,

From the graphs it can be seen that in reality the strips lose their stability
under a load considerably smaller than that given by the theoretical solution on the
assumption of ideal shape and ideal boundary conditions. The discrepancy between
the experimental and the theoretical values of a, are all the greater the smaller
the parameter of curvature.

Thus, in the given case we have a picture analogous to that observed when
cylindrical shells are tested for axial stress and spherical shells tested for external
pressure, when the loss of stability also occurs under a load considerably smaller
than the predicted theoretical solution under ideal conditions., The discrepancy
shown is explained mainly by the deviations existing in the experimental specimens
from the regular geometrical shape and partially by deviations in the boundary con-
ditions. This is confirmed by the theoretical analysis of the influence of these fac-
tors upon the strip stability, given in $46.

Proceeding from the experimental results in long strips in /XI. 9/, the follow-

ing empirical relations were obtained for the parameter a,from the curvature para-
meter k*:

500 |, 4650
at =165 — 04530 (51.1)
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with hinged edges:

P =06 o, (51.2)
for values 25 < k* <125,
The dependences {51.1), (51. 2) are shown graphically in Figures 35 and 36.
The curve ali‘ is situated somewhat lower taan the corresponding experimental
points, which is explained by the fact that in testing the specimens, the hinge at the
edges was not ideal, and to take this fact into account in (51, 2) a numerical coefficient

was taken which is somewhat smaller than its experimental value.

For strips of finite length, a semi-empirical formula for the critical pressure
is obtained in the form

_ 4D
Pa= Pogn (51.3)
where . is the coefficient depending on the curvature parameter k* of the panel,
given by the relations (51.1), (51.2); B is the coefficient depending on the ratio of
the sides A = % For fixed edges:

P=1—"+ (51.4)

for hinged edges:

=142 (51.5)

where A >1,
The empirical relations given here are obtained from the results of testing

a comparatively small number of samples and c>uld be made more precise at a later
date on the basis of more comprehensive experimental data.
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Chapter XII

THE STABILITY AND LARGE DEFLECTIONS OF
CIRCULAR CONICAL SHELLS

§ 52. The Stability of a Conical Shell with Circular Section
under Longitudinal Compression

We shall specify the position of a point on the middle surface s of a conical
shell by the distance r from that point to the cone vertex, measured along the gener-
atrix, and the angle ¢ between the axial plane passing through the point and the
axial plane of the origin of coordinates, Then in the formula of $ 25 one has to set

aamr, 3=9, khi=0, by=—ctgy/r, B==rsiny, (52.1)

where 7 is half the cone angle.

Figure 37

Let the shell be in equilibrium under a uniform external pressure p, and
compressive and shearing stresses uniformly distributed along the end sections.
We shall denote the compressive stress by To and the shearing stress applied to
end r = ry by to(Figure 37). Then the internal stresses in the membrane state of
equilibrium, determined from (25. 11) and (25. 12) by neglecting the bending terms,
will be respectively equal to

’

Ti— 2181 Toe
2 r

Ty=—prigy, Tp=—25" (52.2)
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As one is considering a shell in the form of an ic eal circular cone, and the state
before the stability loss is considered to be a membrane state, in the equations of neu-
tral equilibrium (25,27) and (25.33) one should s¢t

v.?— ..._—__—x’7==0,

The additional stresses which appear with buckling are expressed, according to for-
mulas of the form (25, 32), by the stress function y:
T.-l a1 By N¢

r ar —r; ;9;‘ P T o (52.3)
A2 =g si
Ty a’(r ) fr=g@siny.

The equations for determining y and the deflection w take the form

DAA 1 Py prdw gy siow 1 0wy
wSctgr T — TS 7'(r ar ¥ rt g (52.4)
—oTL i LN o aag gl
2Ty 7 %, 0. 3¢ —At= 55 =0,
where
@ 1o I
AL )= ()L 2y Lot
(=) += )= 5 P (52.5)

If the ends of the shell are freely supported, then at the edges r = rg and
r = rj one has to satisfy the conditions

w=0, T1=0, l,==0,

o vrow ) | Pw (52.6)
art + r (dr + r gt )_U'

In the case of pure longitudinal compression
p=:=0. (52.7)
This problem has been investigated by I, Ya, Shtaerman /XI11.1/ on the assump-

tion that an axially symmetrical buckling occur: with the loss of stability of the
shell buckling*. With this assumption
d
[rd—(. .)].

Consequently, introducing the notation

AL =

N -
gla

= dwjdr (52.8)

and integrating the equations (52.4) once, we shill obtain

rf;[%fr(rj—:-).l:ﬂ(w +oelgy, (52.9)
ar1 d &, s -
Dra[L 2 e |+ (5 + ¢ )tar+Tone=0 (52.10)

* Non-axially symmetric buckling has been considered in$ 20 of /0. 13/,
See also article [IX.8/,
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where c and c! are arbitrary constants. Eliminating the quantity dy /dr from (52.9)
with the help of (52.10), we arrive at the equation

Dlbso + Torobso + Erectgty + Elcctgly— “<8Y ¢, (52.11)
r
where
_ ) d) ()
Gl =rS + 322 (52.12)

The homogeneous part of equation (52.11) can be represented in the form

@) (@3 +m) oe =0, mymy = EXY = T (52.13)

Here mj and mg are roots of the equation

Dm?— Torgm -+ Etctg?y == 0.

The absolute minimum of T0 is reached when

m=yEtagiyD (52.14)
and is equal to
To =22V DE! ctgivin. {52.15)

Consequently,

my == my = T4re/20D.

Thus, instead of equation (52.13) we have

(A 4-m) (824 m)awy == 0. (52. 13A)
The integrals of the equation
AL Ny =
(Gatmywy’ =r 2 T 4 ——Jor =0 (52.16)

are also integrals of the equation (52,13a). By the substitution
x=2Vmr (52.17)
the latter is reduced to a second~order Bessel equation

Py 1 doy 4 '
pusiig 2 -—_ —_ =0
ao U % ax +(l zl)m" ’

whose general integral is
@y = Cy [3{x) 4 Ca Nz (x), (52,18)
where I and Ny are Bessel functions of the first and second kind,
It is not difficult to convince oneself that the function rdmb/dr is also an inte=~

gral of the equation (52.13a). Besides, equation {52,11) has a particular integral of
the form Cg + Cg/r., Thus the general integral of that equation has the form
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o &= CL (VAR + N2 Vir) -+ Cor L1t 2V RN+

+ Cor SN2 @VmAl 4 Cot L Co= wot Co 4 - C,
C=—0C, C' = — Tw«;C:tgy%—Etc!g-;C«.

{52,19)

Integrating once more, we shall obtain the expression for w where an arbitrary
constant Cy will appear,

In the case of a symmetrical deformation, as can be seen from (25, 24), upon
satisfying the boundary condition w = 0 the boundary condition ¢,= 0 becomes equi-
valent to the condition u = 0, which can contradict the condition T, = 0. We shall
assume that the skin can slide along the transverse ribs and, consequently, it is
not obligatory to satisfy the boundary condition € y= 0, Thus, in the case under
consideration, three boundary conditions ought to be satisfied at each end.

The computations are simplified if, as in /XII. 1/, one limits oneself to the
case of a dome with a very small opening, as with r—0, N_— > and to keep the solu-
tion finite it is necessary to set C, = C, = C, = 0, where it is sufficient to satisfy
the boundary conditions at only one end r = r|. Besides, it is useful to take into
account that according to (52, 14), for large values or r the quantity 2lmr is of the
order of | R/t. Consequently, I, and its derivatives can be approximately replaced
by their asymptotic expressions

]/—“1 = . N Ty 52,20
f2(x) 5 cos(x . n) oo sin (x : n),__, (52.20)
in the case of a symmetrical deformation we have, according to (25. 24) and (54. 4)
- -2 e
o dr’ £ r + r

But for the membrane part of w, equal to C,, one has to satisfy the conditions

Tg = 0, Tirsiny= const or eg + v1=0, r{e] +veg: = const, u + wctg y= const.
Consequently, with w = C, we should have u= corst., £ =0, €9 =0, i.e,, the de-
flection w = Cq produces a displacement of the sh:ll as a rigid body, and does not
influence the deformed state and the boundary conditions. Therefore C; may be taken
to be zero.

Thus, it remainstochoose C3, C3, Cg in such a way as to satisfy the boundary
conditions.

From {52,10), taking (52.3) and (52,16) into account, we find

Consequently, in order that the condition T{ = 0 ke satisfied when r = ry, we should
have

Cs=mriwe at r=r,, (52.21)

To set up the equations expressing the boundary conditions w = 0 and de/dr 4 w/r =
=0, withr=rjorx=xy = V32mn, it is necessary to carry out considerable compu-
tation work. Here, besides expressions of the fo-m (52.20), we use the formulas for
the differentiation of Bessel functions with p=1aad p = 2:

Al ==Ll @)t L), [ x5 dx=xot g ()
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To simplify the computations we shall neglect quantities of the order of unity in com=-
parison with quantities of the order of x2. Thus, after eliminating C; by (52. 21),
we bring the geometrical boundary conditions into the form

ey — ¥s)emn, + v(c.l:+ > xlll) =0, (52.22)

Xy

X -
(C./z + —22— /l)»'-—ﬁ = 0. (52.23)
In order for these equations to be consistent, we should have, for c, + 0

Iy (x=x) =vl1{(x=1x;) or ig<2 mrl——-:i)=gl’ mri. (52.24)

Simultaneously with this equation, (52.24) must be satisfied, and therefore the equa-
tion

V Etctgv/D = m,,

should be satisfied, where mg is a root of the equation (52.24),

This will not be satisfied exactly, but one can choose two successive roots of
(52.24), namely, mb and m!, between which m will be included, and as these num=~
bers are rather large and their differenc? is small in comparison with m,, the value
of T, at m determined from equation (52. 24) will be only slightly larger than the
absolute minimum of T given by (52. 15).

In conclusion let us note that from (52.15) one cannot obtain the formula for
the critical compressive stress in a circular plate by setting y= #/2, or a formula
for a very shallow conical shell, as for small values of ctg y the quantity } zr is no
longer much larger than unity, and the asymptotic expansions of the Bessel functions,
which we had used, are inapplicable.
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ORIGIN:L. 7 .
OF POOR GUA.ITY

53. The Stability of a Conical Shell unier the Combined Action of
Longitudinal Compression and Exte -nal Normal Pressure

The stability of a circular conical shell under uniform compression had been
considered, apparently for the first time, in article /XI1I. 2/, where no attention
was paid to the fulfillment of the boundary condit.ons. Later, I.1. Trapezin in
article /XII. 3/ gives the solution of that problem: by the Galerkin method, satisfying
only part of the boundary conditions—this work, like the article /XIL 2/, not being
carried through to computational formulas. Therefore, here we follow our article
/IX. 8/, where the question has been treated generally with the proper consideration
of the boundary conditions.

Let the shell be under a uniform compression p and a longitudinal compres-
sive stress whose absolute value at the end r = rg is Tg. Then, in the formulas
(52. 2) which define the stresses before the loss of stability, one should set 1, = U.
Introducing the substitutions

,
z=In-", $=Fcosmp, W= YW COsMme,
I

° (53.1)

v

1 — n :
vi= , ay= ——_ 2= @,/sin vy
2 sin 7

and neglecting unity in comparison with nf accorling to the theory of shallow shells,
we bring the equations (52.4) into the form

d*F £F dF . dF
T 2t ==+ dny ”: 4t F —
—fl”—’fawnJI[‘g:‘j‘ F@a— DS 4w — ) w.}z 0.
81 i (53.2)
'ty aay
etu-: {"d—:‘; —a(l— v,)%l— m’%:”—i— 1ny2(1 —v,)% +
‘g o plimga (F __AEN 1 P 3T g L Ay
+m w‘+Dlg18 ) dz? d:)+ ) foe [2 dr? +
+ (Vn +5 % - ”l’”'l]-l-
Torode* d2u dur,
+ I | g ) S (=) =0 (53.3)
The boundary conditions (52,6) take the form
=0, ¥, (53,4)
dr? £ .
o 2=0,
4_"'_,1,?F=0 "_ZF_~5’£=0 z=:U=In(l+L/r).
d: 'oder dz (53.5)

We want to solve the boundary value problem, taking the waves along the shell length
to be of the form

w = Asinmz, m=m=/C (53.6)

Here the boundary conditions {53.4) are satisfied if m is an integer*
(53.7)

* Translator's note; the numbering of formulas in the Russian text inadvertently
introduces (53, 7) where no formula seems to be referred to.

!
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The initial equations are applicable only in the case of a short, thin shell
which buckles with a formation of a large number of waves, We shall assume that
one is considering shells of medium length, for which

resiny~1, (53, 8)

where, just as before, the symbol ~ indicates that the two quantities compared are
of the same order of magnitude,

For shells of small angles

C=in{14+ L/rg)) ~siny,

and we have { ~1, if sin y ~1. From equation (53. 2) we find

F =A™ + Are=" - Biem¥D2 L Brel? 4 — (53.9)
— AEtrycig yeU+# (O sin miz + x C0s miz),

where Al' Ag, By, By, are arbitrary constants.

om0 =) () (53.10)
(m2+ 2P

&~ mA v, — v,
(mll+ nl.)‘

Satisfying the conditions (53.5) we arrive at a system of equations for deter-
mining Ay, Ag, By, and By. When approximately determining the hyperbolic terms
of the expression (53.19), one can set

sh b = chml,

and all the more so since, as will become evident in the following, these terms
have a negligible influence on the value of the critical load, Thus, we find

PR S 1. ST N WSS, S’ Cbl) A
2(n? — m)shnl 2(ay + 1)shnt (53 11)
AgmuPe= P g P ‘
LA N ry— 1

where

Dy = 0,25(D, — ny%y), Ps= 0,5 (20, — m¥x — P4},
O = (1 +w) Ot mDy, Dy=(14v)Pr—mby, (53.12)
O =1 +v)P—my, ®=1+v)x+mo

As the geometrical and the static boundary conditions are satisfied, we can in-
tegrate the equations (53.3) by the Bubnov-Galerkin method, multiplying its left-
hand member by wrdrde . The characteristic equation obtained has the form

P—Q—-M}N=0, (53,13)
where
P = mper{md+ mPmt41 —vd),

sz&l a4 A fm? 4 3y (1 — ) —0.5]
7] m2 +025(1 + 2+ '

M= J;{ Do -mPs (Bt mPg)el
g — | imd (v — 1P w2 (o — 1P
S+ Ps(n =2 }
mit (L mA e (n— =W
N = |m (@ — ®3) + n (®s — P )}/{m:? + 1) (53.14)
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with the notations

P=l+i. C=1Inp, Vl-———l_-:_:, vp=1— 2v?,
re ]
o MUl Ulvodl cidinke Bo (Dt -
T ordagir( v — (1 —vy 7oty (PR — 1)
A= BOEDU =) g5 Mm2H025(1+ 20
protgy(pttn —1) ' ’ m,3 4 0.25% !
Rx 5[m“+0.2$(l + D)8 (mE 4 vy mo=
w2 (m? 4 v ' 3
r's
T _ (e + vt m? 8 :_V_—3_
Im2+ 0 —vlma+w) ' Vi {53.15)

(m is an integer).

This equation can be considerably simplific-d for an extensive class of thin
shells, satisfying the condition:

C==lnp<l, Lgl’:?l‘o (53.16)

Then, from (53. 15) we have mf)nz. Retaining only the principal terms in the ex-
pressions (53, 12) and (53. 14), we obtain

4, [t — P —min 4+ 200 — v)mdY
P md + (a4 o+ AP M3 4 e o, — 1

M
N

Calculations made with this formula by taking ac :ount of the expression for P and
of the following solution show that, admitting ar overestimate of 2-3% in the value
of the critical load, one may neglect the quantity M in equation (53. 13) and thus
somewhat simplify the expressions for Q and N, Let us note that the maximum
error occurs at the boundary of the region when he shell becomes arbitrarily long
and it is desirable to support it by elastic transv:rse ribs, With the decrease of
. this error, as well as the error from neglect ng unity in comparison with nf
(which we had been doing systematically) falls sharply to 1-2%. Thus, we shall de-
termine the critical load from the approximate e:quation

P a4+ hm? — A (m? + 2y myt 4 vym2 )
B m24025(1 + 20, mt (1 W) (m? + n2R(m? + v} (53.17)

In the special case of longitudinal compression p = 0, pA is given in terms of
Tp by (53.15), where it is not difficult to convince oneself that to the critical load
corresponds the value of m2 > 1. Consequently, equation (53.17) may be replaced
by the approximate equation

To( 2= pmy) _ dimdémbt | me
Betm—1) mp (m?+ n2p

and the critical value of the compressive stress i3 equal to

Tox = YVKO(T = (@ 1) (1= P}'_‘]_)' Ry=ry
VT =) R (1 —p-7)

- (53.18)

The deviation of this formula from the analogous :xact formula (52, 15) results in an
overestimate of 4-5% with { 1.

Utilizing the notations (53,15) and setting, in addition,

!=(m;’+n1’)/m., (53.19)
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we bring equation (53,17) into the form

p=R (38 £ 1/8): (M — 1 +4m). (53.20)

By replacing the quantities m;, n, by m and & respectively, this equation takes
the form of the corresponding equation (36. 14) for a cylindrical shell, and there-
fore, without repeating the rest of the analysis, we give only the final formulas for
the determination of the critical value of m; and p:

a) m=1, m=xflap, p=1-+Lir,: (53.21)
_ __174Kmgt = YTV
b) P e e TV (53.22)
for shells satisfying the condition
049> 6,>—083, 6,=2(1 —3«1) miidy; (53.23)
c) for shells satisfying the condition
0.86> 8> — 2.93 (53.24)
the approximate value of the critical pressure is equal to
Pe= 1.31R’n%m,(1.33+2p’>;[1 + - na+ p)}. (53.25)

where P is the smallest-absolute-value root of the equation (36.19). With A= 0,
A, = 0.5, one obtains the formula for uniform compression.

With 0,25 < v< 0.33 (as is usually the case for metals) after simple calcu-
lations neglecting the second degree terms, (53.22) may be written in the form
in the form

1 Yol — D {t — p—0+))s E g ¥ (1IRYE
(?’*‘— D{l+0(3—05)ine
— L 20Tt~ —
P_1+ ’_°| A= ’ Ra-—"o‘E"h (53.26)

Pu=14

PRyv (P~ —1)
e=|_13{_1_:_‘i(.'ii}'~ F 4
pl—r — 1 Rotnp’

when the condition (53,26) is observed, or

0.49 > (1 — 2))8 > —0.83. (53.27)

Let us note that in passing from formula (53,22) to the simplified formula
(53.26) we have reduced the critical pressure by at most 5-7 % (with In ¢ = 1), but
formula (53.22) in its turn had been derived from the characteristic equation(53,13)
by simplifications which increase it by 2-3%. Besides, by approximating the solu-
tion from (53. 6) by one term of the series, we had increased the value of the critical
load, where for axial compression this increase turned out to be 4-5%, and there-
fore our last transformation of formula (53, 22) results in an improvement. Thus,
as a result of all the simplifications, formula (53. 26) gives a value of the upper
critical pressure close to the actual one.
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§ 54. The Stability of a Conical Shell of Varying Thickness
under Uniform External Pressure

Let the shell thickness vary linearly along the length

t==cr (e==fyr,), (54.1)

where t; is the shell thickness at r = rg.

The investigation of the stability of such a shell is of interest, mainly be-
cause it is a uniformly strong, thin-walled stru« ture, Besides, the equation of its
neutral equilibrium can be integrated exactly /XIL. 7/ for this case.

The stress in the membrane state of equilibrium are determined, just as
for a shell of constant thickness, from (52, 2)

1
N=—gprigy, Ti=--prgy (54.2)

We determine the additional stresses and moments appearing with the stability
loss of the shell from (25. 24) and (25. 25)

Ti=Kyr(utvea), Tiz=Kg (1 —v)ep,

My = Dord (x4 vxy), Maz = Dyr? 1 — v)nys, 1,_5 (54.3)
where
£a Ea? D du
k=15 D=y =a w=, (
v 1 . = Lo 54.4)
& ,a,,+r(“+w‘:tg7)’ 2642 dr+r(d‘;, 0)
T ldw_ 1w 1w
arz ' rar poop’ ? or\r o/’ (54,5)

Eliminating u and v from (54.4), we find th: equation of compatibility:

ad —pOy Py O = P
TRl It s T e e =ragr .

Upon expressing €;, €, and ¢;in terms of the stress function ¥ according
to (52. 3) and (54, 3), this equation reduces to the form
M _O-—@y 202w 2, 2 Yy 4 B
.d_r:_ r 0r’+ r or +r7 dride® 0 Ordegd -+
T~ 3
+ by

oY 1oy dw = E (54.6)
o e T gy K =0 Ku=Eacyr

We obtain the equilibrium equation from (7 4) by use of (52.3), (54. 3)-(54. 5):
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1 4D Fw w | dw , 2 Jdw
A L ds 7w w_ < -
DAdw + rodr {Qr aré T2+ ar? r or + r drdw,?

3 Gwy dD (v dw v Pwy Ry oY
r dp,‘} “drt \ort + r ar +r“ dv,'—'} r on (54.7)
Ll dw ) dwy
! or? BN oor ot %
After substituting
z=1In’, t=Fe<cosny, w=e Wwcosny (54.8)

Ty

and neglecting quantities of the order of unity in comparison with n%, the system of
equations (54.6), (54,7) is brought into the simple form

dtF a
— — ¢ — + 1 F-K (
dzt " an +m o

diw,

_odm L 3 \=
dz* 2 dz + 4Wl)—0‘

dw, (o, 0 PP [ 2
T <2fu 2 ) F(m pundiw +

opydiF | gdf 3 Py
+Du <11:*+"d:+4 ) '
P8y
pu Do (54,9)

Taking wave formation to be of the form (53. 6), we arrive at the characteristic
equation

(m®+ n?)—pu (fll"'f‘ ";’C)+

Kn my¢ - 25m? 4+ 916 _
Al A e T =0
+D|) e (m,? 4 2y

(54,10)

This equation, obtained on the assumption that n? > sin? Yy, is applicable pro=
vided that the shell is of medium length and small angles, as even for shel's of
medium thickness n >3; or, if the shell length is less than the radius of its smaller
base, buckling occurs with the formation of a large number of waves along the cir-
cumference.

For a short shell of not too large an angle, satisfying the conditions

T30, LK Ry=rytg1, (54.11)
we have

C=in (14 5) <G5 mi e (54,12)
ro 2

Here, in the last term of the left-hand member of equation (54.10) one may neglect
2.5m12 + 9/16 in comparison with my*, and thus obtain an approximate character-
istic “equation identical with the corresponding equation for some ficticious cylin=-
drical shell

(mi? 4 ") — pu (ﬂl' + %‘2) +

+ K SE mitfmet 4 i)t = 0. (54.13)

Let us note that here the admissable error in the value of the critical pressure is
one-fourth the error tolerated in the above-mentioned term of equation (54. 10), as
with the critical value of n. this term, according to the analysis carried out for the
cylindrical shell, is one-third of the first term of the equation.
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With the shape of wave formation defined b;* the equalities (53.6) and (54,8),
the following conditions are satisfied exactly:

w=0 T;:=0 at z2=0, z=( (54.14)

The first of these is apparent from (53. 6). The second conditions is satisfied, as
3
M _ T (PE L gdF L3 EY o
T,—a" e o +2dz +‘ )cosmp,

where the expression in brackets, according to the second of equations (54.8), is
equal to zero at the shell edges,

When the boundary condition Ty = 0 is satisfied, it follows from (54.14) that
the geometric condition €3 = 0 is fulfilled. However, the boundary conditions

T,=0, Mi=0 at z2=C, z=( (54,15)

are not satisfied exactly, The principal part of :he expression for Ty is, according
to (52,3), (54,8), and (54.9),

T  nlAK (m3—3/4) 2m,
i - FIE e inmiz 3 cos m,z},
23—

4

therefore, the condition T; = 0 is satisfied at every point of the edge contour only
upon neglecting unity in comparison with m,.

It can be shown that the maximum value of the unbalanced contour forces, ap-
plied to a contour element defined by the angle d p, is m;? times the corresponding
potential energy of elongation of the middle surf:ce of the shell. The error from
the non-fulfillment of the boundary condition M, = 0 will be even smaller, namely,
of the order of mg/n;* in comparison with unity. Without dwelling here on the
proof of these assertions*, we shall only note that to obtain an approximate charac-
teristic equation (54. 13) from equation (54. 9), one has to neglect in the latter the
quantities w and F and their first derivatives wit1 respect to z in comparison with
the second derivatives, There, F will also be p:roportional to sin m,;z, and conse-
quently, the conditions (54. 15) will be satisfied l'y retaining only the higher terms.
We see that tolerating a comparatively large error of the order of unity in compari-
son with m in the boundary conditions (apart fro1a the principal condition w = 0) and
neglecting the terms containing odd derivatives «f the required functions sought in
the differential equations leads to an error of th¢ order of unity in comparison with
m,? in the determination of the critical load.

Thus, admitting the error indicated in the salue of the critical load, we may
consider that the boundary conditions are satisfied and the critical pressure is de~
termined from equation (54. 13) in the same way n which it had been done in §36 for a
cylindrical shell, and the formulas derived there for the cylindrical shell are trans-
formed into formulas for a conical shell of varying thickness, by replacing the
quantities t/L, t/R, Rt/L2 respectively by

3/, actgy, atgy/li

Thus we find, for example, that

* See Chapter II of /XIL 7/.
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__0.85 fafacigy)le 065 4o
L TN '(l 3 Vutg‘) (54.16)

by satisfying the condition

4“71

< 1.2 “_SE_I (54,17)

Another limiting case is of special interest: the consideration of the stability
of a conical cupola with a very small opening of radius rosin y for ro-0/XIL 8/.

In that case

C=in(1+:—-)—->oo, mi== 0,
[\]

and in equations (54.9) and in the boundary conditions one may neglect all the terms
containing derivatives of F and wy with respect to z. Then all the boundary condi-
tions are satisfied, and from equation (54.10) we find

2 Ky ctgy
16 Dyn (54.18)

) L\ " . > '
ng = i_%_(rr> (cos gk (st )Rl =¥k,

pu=ni+

Pe== " (54.19)

N5 Ft st Vh
= o r,t;,'w) :

Our original equations had been obtained on the assumption that along the
shell circumference many waves are formed, This assumption, as can be seen
from (54.18), is realized only for values of y not close to 0 or /2.

299



§ 55. The Stability of a Circular Coiical Shell under Torsion

We shall consider briefly the determinatian of the upper critical shearing N
stress T b, uniformly distributed along end sections*. We shall solve the problem
by the Ritz method, making use of our energy criterion for stability, expressed in
the form of the variational equation (25, 31), where B = rsiny, g,..... »  wppare
quantities given by (54. 5).

For the components of the additional digplacement which appears with buck-
ling, we take the expressions

i = Cier{sin (mz 4 n9) — s-n (u22 + ny)} ,

v = Cae* {Sin (112 + %) — sin (wz + ng)} (55.1)
w == --2Ce*sin (pz -} r¢)sin m,z,
where
r_ =y L T
z=Inrlr, m'=?=—L_Q'J ,"—-In<1 + r.;)' ® 7 - (55.2)

and Cx' C,, C are arbitrary constants.
It 18 not difficult to show that the functions (55.1) are the exact integrals of
the differential equations of neutral equilibrium (25.26), (25.27), in the limiting
cages when y=0and Y = n/2, and in the general case satisfy the essential bound=
ary conditions
u=v=w=0 at z=), z=C. (55.3)

Introducing in this section the notations

i L R LT L L

°

T K= ’ Kp*—1
= n'siny

(55.4)

and substituting from (55. 1) into (25. 31), we obtain a quantity proportional to 3
F= ClbmC 4 C:Cagy) +CI( 7l ML 4
+Ci[‘—’f{p§ +p§+4)+nq+ CiCepni(l )+ Coetgtr
+ 2C:Cnictg v+ 2C, Cvpcig 7 + T { “'H'f“" +
+ v (i +p§)(n?+c'7"'ctgv)+(ﬁi +%‘n|cig7 - 1)24—
+ (=6l +63) (i +C cgvey).

Here we neglect quantities of the order of unity in comparison with nlz in the terms
containing the small factor D/ry2

* See article /XII.6/ and also § 19 of the monograph /0.13/.
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Setting up the equations

93/0C, = 33'10C; = 03'/0C =0,

eliminating C_ and C_ from them, after neglecting quantities of the order of unity
in comparison with n;2, we obtain the characteristic equation

Cy' =2
Co== —— =
ST — gy
=-__.___.———"%u(l—"“_"ﬂprT fga: {1 4 — e
Ve — 1 LT per ey
| 3 vote \ 4 Yo (L~ rppoff)vasy
" 1+—’—(xv°~) —'_[1 Lz eraliyas )
+ #“[ et s )T T o Al (55.5)
where
& e p tlm it md) s L
Tagy V1o myeEem: T om? tor
VU SR L L
e=Ta T g+ T Ta—w (55.6)

The subsequent problem consists in the determination,from (55,5), of such values of

pz=w - 2n, and ny, for which Cj, and therefore also tg, has the smallest value,
To simplify the solution of that problem with the aim of obtaining a computational
formula, we shall limit ourselves to the consideration of the most important case,
when

e << 1. (55,7)

From the expreasions (55. 6) and (55. 4) it is apparent that the condition (55. 7) is
satisfied if the shell is thin and the value of Y is not close to nl2.

Further, as is shown by trial calculations, with values of ek, equal to 0.1,
0.05, and 0,02, the critical values of uy are approximately equal to 2,0, 2.5, and
3.5, while the critical value of B is in all cases approximately equal to 1.2, and
the~fore {with an overestimation error of less than 2%) the quantity C o may be deter-
m. - from the approximate formula

1

32 T
v (el T gy NP/ ato
Com Pt — [+ 2 (0 - (55.8)

From the conditions of minimal critical load

GCu/dpa=0, OCu/B =10
we find by the method of successive approximations the respective values of u, and
fi. As a function changes slowly near its minimum, to determine the critical values

of B and powe shall neglect ensB in comparison with unity in the expression (55.7)
and set

Thus, to the first approximation

um Gl o1+ ) o]
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Here from equations 0Cy/due=0 and 9Co/d8=0 we find

8! 1.236, p;=l.23(% " e ='2.61(:_,‘)uo‘

Introducing these values of § and ko in (55.7), we obtain

Co=Cll =261 (:—:)”‘[1 +en (0330 4 °—|3,$) +

.37 0.
+ ol (029" + °Vi“,35+ fﬁ')]

With v= 0.3 and ey = 0,1, we find ci! IC}) =1.26 . Usuallye < 0,05, and then

Cél IC; < 1.15 . Regardlessof the considerable ifference between Cé‘ and Cé, the
error in the value of Cy, given by the formula (¢ 5.8), does not exceed 5% even with
€ = 0,1 and 0,25 <v< 0.33, where C} turns out to be larger than the critical value
Besides, as is well known, energy criterion for stability gives an excessive

value of the critical load, and therefore we shal improve the formula for Cg by
dropping the last term in the expression for C3!, which for & = 0.1 constitutes 8%
of the value of Cy.

Thus,

Co= 2,61 (1":)"‘[1 +0.33 (:-:)”3 1+ v.)],

e<L0.1; 0.25 < vl0.33,
nt { M40 }102

_ Et(—Nnt _
S grVIiI=v 62 -1

a2, 2
Ty == m)- Ctg’ T8k Co, LT
(55.8a)

For a short shell of small angle
Re=R=nrslny, Ltgy<<2Rs tgy=siny.

In that case

Pl_]:,‘.’l'%l, E:lnpzT, :::

and we obtain for the critical stress a formula diifering from formula (38,17) for
the critical shearing stress t) in a cylindrical shell only by a numerical coefficient,
where the range of applicability of these formula: 18 defined by the inequalities
(38.16) or

0.3 < ex<{0.12, (55.9)

Calculations show that the ratio of the critical shearing stress at the boundaries of
the region (55. 9), found for a cylindrical shell from (55. 8a) and (38. 17) are 1.14
and 0.99, respectively,

This coincidence of solutions obtained by different methods may be considered
as entirely satisfactory, if one takes into account that in this section we satisfied
more rigid boundary conditions (55. 3) than in § 33,

For values of y not close to n/2, the criticel shearing stress is determined
from (55. Ba), where the values of C, for v= 0,3 :nay be taken from Table XVII.
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Table XVI

0 0.]2‘ 0.ID| 0,07 \ 0.05 0,03

Co 3.75

3.87 ' 3.95 1 4.08 ‘ 4.31

To our regret, we do not have experimental data for a conical shell which
would allow us to judge the influence of factors not taken into account in deriving
the formula (55. 8a). In the case of torsion of a cylindrical shell, to make the theo-
retical formulas (38, 17) agree with experimental data it is necessary to introduce
a correction coefficient 0.6. It is to be assumed that such a coefficient should be
also introduced in formula (55. 8a) as long as it is not established experImenta.lly.

In the limiting case of an annular plate, when y = x/2, our approximate solu-
tion is inapplicable. But in that case it is easy to integrate the equations of neutral
equilibrium (§2. 4}, The solution of that problem which fulfills the boundary con-
ditions has been given in /XIL 9/, in which, however, no computational formulas
are given. If one limits oneself to fulfilling the more important boundary condition
w = 0, as is done in /0. 13/ and /XII. 6/, the critical shearing stress may be deter-

mined from the approximate formula

T‘w=‘o=—Eﬁj[(mg-‘r-l)zﬁ—?n:(m% - 1) 4-n4], (55.10)
Ty

where n? and mg satisfy the equations

nt= L_ (m3 +2), ma= —2¢{(n* — )"+ (n3 402 (m2 A AT, (55.11)
a and b are the inner and outer radii of the plate,

p=1+L=2<740, C=Inb/a.
r, @

If n? is not large in comparison with unity, then instead of n one should set in (55. 10)
and (55. 11) the integers closest to it and the critical stress is the smaller of the
values of T }; thus found.

If V<< x?, then

4n? 68.8D b \?
m=i, m=— 2157, Tha= (n2) (65.12)
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§ 56, Lower Critical Load of a Conical Shell*, Local Stability of Shells

To determine the critical load of collapse from the state of equilibrium with
large deflections, one has to use the relations of the non-linear theory of shells,
which for the case of a circular conical shell may be obtained from the formulas of
§ 25 by setting B = rsiny. Let the shell have the ideal regular shape, i.e., w° = 0,
Then from (25. 12) and (25. 33} we obtain the condition of compatibility and the equi-
librium equation

AAY e £pf L (S )2_L Fwl gt 2 ded gt |
ri\ orde, rtoogrt g2 Oy, Odrde,
L l(owiN 1wt 4oL gy ! (56,1)
l‘( o9y r 8r on? v clgy ar? J'
i ol 1 dtp! (/b gl | %!
A, i el _ _ (_ dwl 4 1 Sty |
Darat + r ctgy or? n aré 7a roor + r? Og
3 /1wty
271107(’ o‘v.")*” =0, (56.2)

where TII' TIZ' Tiz are expressed in terms of y! according to formulas (52.3).
Introducing the substitutions
z=ln(rire), Y =eF, w' =r ctgyew, (56,3)

we reduce these equations to the system of two non-linear equations in F and w!,
whre the independent variables z and 9; are dimensionless quantities. As had been
shown in §§ 52-53, with the loss of stability of a thin conical shell under longitudi-
nal compression, many waves are formed in the axial and longitudinal directions,
8o that

mi~R/IE>> 1, nt=n¥sint- S>> 1,

In the case of transverse pressure, at least, nf > 1. This means that the second
derivatives of wl and FI with respect to ¢,=9 sn Y are large in comparison with
the functions themselves, Besides, if the shell i3 short then Fwljd>>w!, and
in the case of a shell of medium length, Fw)j ozt~ !,

Experiments show that for the state of a sh:1l closely spaced buckles and dents
are characteristic also after the buckling, There¢fore, to simplify the equations
(56. 1) and (56. 2) we shall neglect w] and F! in c>mparison with their second deriva-
tives with respect to ¢,. Thus, we arrive at the Jystem of equations

d’w{ )2 N ax ){ ,/dgw:_’-(?w} ) —

AAF ' = Etrycig? ve: {(

gz09, ) e\ 3z
ot (aw{ I
- d—— 8z '
rF aF!\ (o OFF () | de) |
Adz —. z{_ _)<~!_1. — T
Dadw — e (w +5 o I_a,,’ T % /"
oF' dw! IFL o) 2z
3<~ i)- —‘}-{»"’:" E=0, gy =psiny.
d9z\ 9z 9z dzde, 210, cigh (56.4)

* See article /XII,4/,
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We shall consider these as the initial equations for the asymmetrical deformation
of a conical shell with n"; > 1. They may be consideraibly simplified for the longi-
tudinal compression of short shells, as in that case w and g increase rapidly in
absolute value with the change in ¢,as well as with the change in z. The ratio of
two sugg_e_ssive derivatives is of the order of | R/t, and therefore for thin shells,
when |t/R < 1, we shall neglect F and wl in comparison with their first derivatives.
Besides, as one retains only the higher derivatives, their variable coefficients
(determining the geometrical characteristics of the shell) are smoothly varying
functions; the latter may be considered as constant parameters, subject to deter-
mination from the condition of minimality of the critical load. This corresponds
to the consideration of the stability of an infinitesimal portion of the shell near

z = z_,, whose metric may be considered as Euclidean. Therefore, in equations
(56.4) we shall set e*= e =const. Thus, we shall obtain the approximate equations

T o def 0

oFl el oF | ow] oF

G TR ger 0wt o8 (56.5)
P R

azde, 55;} AT

A2 1 g i
AAF' = Etrdctg? Te’t{(d’u'> dwy O'w, a‘wx},
0209,

DAdw) = e‘{—

Carrying out the additional transformations

w! x

Fledle~ic, wi= s m=i,zc=ln—:—", (56. 6)

,
re <ty Te e o

we arrive at the equations

{p— .
854 £t {(6403 ox* 95’ retgy  0x?

1 ol Pwl 3! Pal I
1Y o dw vy O Tt
Dssw + retgy 0x2 dx2 08 Jst  ax*

[ AR L
12 5205 ax0s +p=0 (56.17)

drwt \*  dwl 0wl i dlwl}
’

These equations coincide with the non-linear equations (40. 3) and (40. 4) for cylin-
drical shells with the fictitious radius R, = r tgy. They are obtained by neglecting
quantities of the order of Jt/R in comparison with unity, which is mathematically
well founded, as |t/R~0. This is the so-called asymptotic integration of the equa-
tions of the theory of shells. In those cases, when with the loss of stability very
short waves appearing have lengths of the order of | R/t, the replacement of the geo-
metrical parameters of the zone of one half-wave by constant quantities leads to an
error of the same order of magnitude. This idea, initially applied to the linear
theor of the edge effect in shells, was utilized in the theory of stability of shells
for the first time by I. Ya. Shtaerman in work /XIL 1/. He, by giving it an intuitive
interpretation, showed that a narrow wavy belt, forming in the equatorial zone of

a shell of rotation with the loss of stability, is very close to the wavy L.lt forming
with the loss of stability in a cylindrical shell.

Later, Yu.N. Rabotnov constructed, in this setting, the general linear theory
of stability called by him the theory of local stability of shells /V. 15/,

V.Z. Vlasov has generalized the theory for the case of non-linear problems
10,4/,

From the above it follows that the lower critical load for a conical shell under
longitudinal compression is equal to the corresponding quantity for a cylindrical
shell of radius R_. Denoting that stress at the sections r = rjandr = r_ by TH
and THreapectively, we find from (40. 25)
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Te = 01878

£ Ve TH R 24
R To L 0.187 & (56.8)

The minimal buckling force PH, acting perpendicularly to the base plane, is
Pt = Tg - 2nR, cos?y=1,18E¢ costy. {56.9)

Hence it follows that the critical force which is borne by the shell does not depend
on its radius, but decreases rapidly with the increase of the cone angle,

One may analogously consider the question of determining the lower critical
load under longitudinal compression of other shells of zero Gaussian curvature
whose surface divides under buckling into alarge number of shallow parts, Then,
making use of the concept of local stability, we set the principal radius of curva-
ture equal to its maximal value. In the case of a cylindrical shell of elliptic sec-
tion with small eccentricity, this radiusis R = a2 /b, where a is the semi- major axis
of the ellipse and b is the semi-minor axis. Consequently, according to the formula
derived for a circular cylindrical shell, the morulus of the lower critical load is

| T )=0.187 55 = 0.187 B2 (56.10)
R at

The corresponding value of the upper critical load is
1 T4 = 06Efb/a . (56.11)
with values of eccentricity

Py

e=22"2 05

This formula is in very good agreement with an analogous formula obtained by
Kh. M. Mushtari /0,13/ by a more precise methcd (see formula (37.22) ).

The contour length of a shell of small ecceatricity is approximately equal to
2na({l—-e2/4), Consequently, the lower critical ;oad is given by the formula

=118 (1 _ 1
Pr=1.18% (1 e ) (56.12)
Analogous quantities for a conical shell of ellipti: section will be respectively,
! L - b1 1lp 1
ITa]=0.18788 S cosy, Pr=1.18£62(1 — Lef )cos'r. (56.13)

The lower critical pressure under all-rouni compression of a short conical
shell may be also determined by starting in from equations (56. 7) and subsequently
making use of the solution obtained earlier for the cylindrical shell. According
to (43. 14) and the fulfillment of condition (43.13), it is necessary to introduce
the coefficient 0.68 for the determination of the v iue of the lower critical pressure,
calculated according to the formulas of §§ 53-54. Here, one should not forget the
fact that formula (43,14) had been derived when only one boundary condition, w = 0,
was satisfied, This state of affairs does not have a noticeable influence on the
value of the critical pressure, provided, as had been assumed in § 43, the short
shell under consideration is one of the segments of a long shell, supported by
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intersticed transverse ribs, weakly resistant to the rotation of the skin elements
and the displacements u and v in the tangent plane, since in that case the work of
the unbalanced contour forces on the transverse ribs at the ends will be small in
comparison with the deformation energy of the shell. For a conical shell too we
assume that it is’divided into equally stable short sections by transverse ribs of
the indicated type.
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Chapter XII:

THE STABILITY AND LARGE DEFLECTIONS OF
SHELLS OF REVOI UTION

$ 57. The S'tability of the Axially Symmetri: Membrane Equilibrium State
of a Shell of Revolition

We shall consider the equilibrium of a shell of constant thickness t, whose
middle surface ¢ before the deformation is a surface of revolution. The position of
a point on o will be fixed by the intersection of tae parallel #= const with the
meridian §= const, where § is the angle betwee1 the axis of revolution OZ and the
normal to the surface (Figure 38), R, = CM is tae radius of curvature of the normal
section H = const, Ry = O; M ig the radius of curvature of that section of the surface
B = const which is a meridian of the surface of revolution. The line element of ¢
is given by (25. 4), where da is a linear element of the meridian, and B is the radius
of the parallel. In the formulas of § 25 the Gaus sian coordinates a and I are taken
as independent variables. To obtain the corresg onding relations in the coordinates
# and B, it is necessary to take into account that

dar=R1d’3, B=~F;siné, (57. 1)

80 __00.) d3_ 1 0(.)
92 98 dz R, o8
Z

T‘""\u
6.
o>
de..1"
/’I/(
0 /
‘>0
Figure 38

Let the part of the shell bounded by the parallels a= agand a= a; be in equilibrium
under the action of a normal pressure P, uniformly distributed over the surface and
external meridional stresses uniformly distributed over the edge contours. It is
obvious that the state of equilibrium of the shell hefore the loss of stability will be
axially symmetrical. Neglecting the variations in curvature, we obtain from (25. 11)
and (25, 12) the following equations for the membtz ane stresses in the equilibrium
state:

d a8 T, T
SBr)=TIZ, R—‘+Ri +p=o0. (57.2)

Assuming that at some critical load the stability of the axially symmetrical state is
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Jost and a large number of waves of infinitesimal amplitude are formed on the sur-
face, we obtain the equations of neutral equilibrium (25. 26) and (25.27). The equa-
tions (25. 26) can be satisfied, by allowing an error inherent in the theory of shallow
shells, if the additional stresses appearing with the loss of stability are expressed
in terms of the stress function ¢ according to formulas of the form of (25. 32).

. 1 0% 1 8B 9% %
LB LB
B o3 B 03 de 9a?
Fpm — L 20 1 4B 0%
BT Geap | B da 03 (57.3)

To determine  and the additional deflection w we have the equation of compatibility
of the form (25. 23) and the equilibrium equation (25, 12)

ALYy Et (Rzx1+ k1 x2)=0, ki=1/R:,
DA w4 Tk + Taka+ Tim + Tixa=0. (57.4)

If with the buckling the shell surface separates into a large number of parts, both in
the direction of the meridians and along the circumference of the parallels, then,
considering the local stability of the shell in the sense indicated in §56, we may
neglect the quantities ¥ and w in comparison with their derivatives, and also con=
sider the smoothly varying geometrical parameters B, kj, and kg as constant quan-
tities. ‘Thus, taking into account (24.13) and (25,24) and passing over to the vari-
ables # and B by means of {57.1), we shall obtain the approximate equations:

Et /1 dw 1 Pw
MMy — = = =0,
'1‘ R\R; R, of* ! R.sin’ﬂ W) (57.5)
1 0% 1 ey
Ag— L 1
¥ R 06° + RAsmi b op
1
1 »e , V' o4 TNow
AA T oy 1 0v
DA+ it op | RaR, OB R340
_____T;__ﬁ""_—o
Risin?8 o8 (57.6)

Here 8 is considered as a constant quantity, equal to the value at which the critical
stress will turn out to be minimal. Setting

¢=Asinm(d—0) cosnf, w == Csinm (8 —8;)cos nB, {57.7)

we satisfy the equations (57.5) and (57.6), if

A(m? + n,*)':——CEt(hz m+ ko), (57.8)
D(mad+ ndf 4 Timd+ Tand+
+ Et (ks m,’+k,m’)’:(rnx’+m’)’=0, (57.9)
where we have set
m, = m/Ry, n =ni(Rasin?). {(57.10)

If the shell has a vertex lying on the axis of symmetry, then from equations
(57. 2) and (25. 6) we obtain

Tim—LpR, Ti=Ti@—8, 8=RR: (57.11)

We shall first consider the special case of a spherical shell, under the action
of an external normal pressure p = const. Then
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Ri=Ri=R, Ti=Ti=—pRp,
— Ti=D(ml4-mY)+ EY[R (m 4 ny)), (57.12)

Fidd
Th=—2 —E-,:,—fle_o.s;; for v=0.3.

The last formula was obtained by Zoelly /XIIL. 17/ and independently by L. S,
Leibenzon /XIII. 1/ by an exact integration of th«: equations of neutral equilibrium
and the subsequent neglecting of quantities of the order of t/R in comparison with
unity. It should be noted that in the approximate investigation of the question, one
had admitted the neglecting of quantities of the crder of VER in comparison with
unity, and despite that the error in the value of “he critical stress turned out to be
& quantity of the order of t/R in comparison witk unity, as in the given problem
the expression for the critical stress has the form

— NI =VDEUR (1 + M+ 1)1 + N,
where A is the tolerable error of the order of V. /R. But
ThA Dl =T I — A M 2 33,

i, e,, equating the expression in brackets to its minimal value, equal to 2, we toler-
ate, in effect, an error of the order of t/R.

In the general case, when the equations (57. 11) are valid, the equation (57, 9)
may be written in the form

En e 1 ;
RO S 4 — Ay=p'A,, 57,13
rvaaw (Mt = (57.13)
where
ym ) /ORT (mdemt b me
Et mP48n2 p~-2-8 n,?

The values of 1; and u, satisfying the equations ip/dh — 0, Op/dp=0, correspond to
the critical pressure, The first of these equatiors leads to L,= 1. Further

B _ etk (-8 (@)
-3 o (p+2-—b2

Thus, the minimum of P with respect to 4 is reacled only with 8= 1, for A= 1.
Such is the case, for example, for an ellipsoidal +:hell under an external normal
pressure p, the shell being formed by the rotatior of an ellipse with semi-axes a
and b about the axis 2b. The principal radii of cu-vature of such an ellipsoid are

R at’ Ry S (57.14)

(@it F poonty, C O (ats 148 + b cos O)

Consequently, for it

6-l+(a‘—b’)s‘:?, r{=--;;—VLa_. (57.15)

With 6 = 0 and 0 = n we have §=1, Ry = Rz  R=a2/b. It is obvious thatthe
neighborhoods of these so-called spherical points «f shells of revolution are the
most unstable if the shell is oblate (a>b). Here fc rmula (57,13) is transformed
into the formula (57.12) for a spherical shell of radius R = azlb, i.e,,
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pa= 1 2E8%a¢ for v=03. (57. 16)

If the shell is elongated along the axis, i.e., b>a, then 8<1 everywhere with
the exception of the poles. Then, according to (a) the external pressure increases
monotonically with the increase in i, and therefore for the critical value of u one
should take the smallest of its admissable values Assuming that p << 1, m3<<<ns,
we find A, o8/(2—8). Here the quantity A /R2 has the smallest value at the point

= x/2. Hence it follows that an elhpsoid of revolution, elongated along the axis,
loses its stability in the equatorial zone where, according to formula (57. 13), the
critical external pressure is

2En ] 1.2 k8

VI(l—9 QR emmp 28— ot (57.17)

=

If a shell in the form of an oblate ellipsoid of revolution is under the action of
an inside pressure (p<0) then, as can be seen from (57, 13), the meridional stress-
es in it are tensile (T >0) but the annular stresses are compressive (T, < 0) for
3>2 or, according to (57 15), (a®--b?)sin? A>b2, The quantity § reaches it maximum
at 8= x/2, i.e., at the equator. Here the meridional tensile stress has the small-
est value and the annular compressive stress has the greatest of all possible abso-
lute values. Consequently, if in the case under consideration the phenomenon of
loss of stability is possible, then the first buckles should form along the equator.
Thus, let

8 =mn/2, 8 =a%b? Ry=a. (57.18)

Asg can be seen from (57. 13), for p<0 we ought to have A;<0. At the same time,

3 >1 and according to formula (a) dp/dp< 0, 1i.e., asp increases the negative
quantity p should decrease, and therefore with the increase of u it increases in ab-
solute value. Then to the critical pressure corresponds the smallest of the possible
values of u: p?* << 1. Thus, we have again obtained formula (57. 17), which in the
case of inside pressure is applicable for a>b. This formula had been obtained by
us in another way in /VI. 1/. It differs considerably from the erroneous formula of
1. V. Gekkeler /XIII 18/, in the derivation of which the buckling zone had been con-
sidered as a compressed ring upon an elastic base, where the coefficient of flexibi-
lity of the base had been determined incorrectly.

We shall further consider a truncated shell of revolution, bounded by the edge
sections

0—=8,and 8—x— 8, (57.19)

which is in equilibrium under the action of contour stresses p, only. In that case,
using the relation (25.6), or

R cosﬂz%(l?xsln 0, (57. 20)

we find expressions for the stresses before the loss of stability from equations
(57.2), forp=0

T) = pi RisInt0/Rasin?8; Ti=— p, R3sin*,/R, sin?b. (517. 20a)

Introducing them in equation (57, 9), we obtain

plﬁiﬂ"li'_;/of (x,+-—) A, (57.21)
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where A1 has the same value as in formula (57.13),

If the shell has a positive Gaussian curvature, then &> 0, dAy/dp >0 and at the criti-
cal compressive stress ¢*>>1,m=0 da=—1 Besides, the stability loss starts
at the edges, where sin2 § has minimum value,

Thus, in that case

p"-__—__.iikgﬂv Rt == Ry (B,) . (57.22)

If the Gaussian curvature of the shell is negative, then §< 0,d%/0u<0. But as
can be seen from the expression for the quantity A1, with 0&gp<|{8| we initially
have A; <0; therefore, p1 <0, if A3>0, where with the increase in u the quantity
Ly, and therefore also |pj| at A; = 1, decreases, With p= -3 we have k3 = 0 and
A1 = « , i.e,, one obtains an indeterminate result, which, however, is easily de-
termined if one returns to the initial expression for pj. Thus, for
p= mzﬂg sinzﬂ/nzﬂ1 = -3 we have

_Dmil =R

" 2 Rysind0p (57.23)

RN
' Rosinly DR n? (%L’ :

sin?@

The smallest absolute stress is reached with n = 2, In particular, for a
shell described along a catenoid, 8= Ry/R; = --1 and with = H;, we have

Pi=—2Ef: [Rptsin?f, V3T — )} (57,24)

The absolute value of this quantity turns out to be R 9/t times the critical compres-
sive stress for a shell of positive Gaussian curvature, determined according %o
(57.22). There according to (57.8) we have A = 0 for u = -8, i.e., the buckling.of
the shell occurs as a pure bending. Such a deformation, as is known from the theory
of surfaces, can occur only in the case when the edge contours are entirely free.

If, then, at the edges, the conditions

w=0, T1=0, M0 for =8, and ¢=n—4, {57.25)
ought to be satisfied, then in the expressions (£7.7) it is necessary to set
m=—ix/x—28,, i— integer. (57.26)

Since 2at Ehe 1211inima1 load without the fulfillment of the boundarg' conditions, n = 2,

4 =m R28in“8/n“R1 = — 8, i.e., in the case o the catenoid R? = R:, 8= -1,
m2sin?0 = 4, then also if the conditions (57. 26) are satisfied, one has to take for

m (in order not to depart too much from the absolute minimum of |p, |) the smallest
of the possible values determined from (57.24) settingi= 1. Thus,

me=nm— Wy, =, 5= —1. (57.27)

But when m and n are quantitiea of the order of unity, the theory of local stability
is inapplicable, as the derivatives of ¢ and w sre quantities of the same order as
the functions themselves, and therefore formula (57.24) can lead to quite an erro-
neous result, For example, as is shown by the thorough analysis carried out by
N.A, Alumyae/XIIl. 19/, the actual value of the critical compresgsive stress at the
equator of a long catenoid is



[Tl =263 EC /R, v= 173, (57.28)

where R is the radius of the equator, However, the investigation carried out
above on the stability of shells with negative Gaussian curvature shows, never-
theless, that the latter are less stable than shells with positive Gaussian curvature,
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§.58. The Axially Symmetric Deform:ation of a Shallow Shell of
Revolution under Large Deflections

In equations (25. 6), (25.9), (25, 11)-(25. 13), and (25. 33), we drop the index
"I" and denote by r the distance of a point on the middle surface from the axis of
revolution, and by 3--just as before—the arc distance measured from the pole along
the meridian. We thus obtain

B=rlrby=0%, S R—— N (58.1)
da da d=? da dz
4 =T =ldrd (58. 2)
dﬂ(r T)y=T; & T s’ T2 prg)
1e.4 _ Pw  hdwdr 1 dw dwdry
’dQ[rdu(T|+Tz)} Et(k’ d:x'+ r da da r dat da da =0, (58'3)

rabaFiCDnt-)

1 drdw
+ Taf k- ~EZEN. Fp=0.
( r da da (58. 4)

Let us consider a shallow part of the she 1 in the neighborhood of the pole and
let the solid angle 28, subtended by that part of the shell be small. Then, taking
into account that do = R1df, r = R2sin 8, and tiat according to (58. 1)

d(rks) =kpdr, cosd) =k, dr,
we find

dr=R,-cos0dd=cosbda=da

Consequently, in the preceding equations the derivatives with respect to o
may be replaced by derivatives with respect to r. Then

drida =1

and using (58. 1) and (58, 2) the equations (58. 3. and (58. 4) may be integrated once.
Thus, we obtain the equations

P& (T Ty =Eefrh % — L(% Y1 ), (8. 5)

arid s de B L R Ll iy,
Drdr[r dr(rdr>]+rlr’k: T dr+ 2 +C 0.

(58. 6)

As at the pole r = 0, dw/dr = —rx 2= 0, .{/dr(T, + T;) * =, and hence C = 0.
In a similar way we convince ourselves that C' = 0,

In what follows, we shall confine ourselves to the investigation of the equili-
brium of a shallow spherical segment under th: action of a uniformly distributed
external pressure p. Let the radius of the base annulus of the segment be a.

We introduce the notations
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L, %y, W gEt, A= 2=V
dr 9

(58.7)

Then from (58. 5) and (58. 6) we obtain, using (58, 2), the equationg*

dri d 1 a (58. 8)
Paly OO ]= g e v,

L2 +rd®—op) 422 =
pa[r ] Hroe— w2 —o. (58. 9)

Further, from (25.10), (58. 1), and (58. 2), we obtain expressions for the
radial bending moment, radial stress, and peripheral elongation;

D rdd , b -1 ¢ deo (58, 10)
M,=-—.;(;p+vp), T = -T-,lg vP —-;j—;-,

We shall consider the generalized boundary conditions, assuming that the
shell has elastically flexible fastenings at the contour.

We shall take the bending moment M , along the contour as proportional to the
angle of rotation A,of the contour of the shell

M,=X,B,=)q%ﬂ for p=riam=1, (58.11)
r
where A, is the constant of proportionality,

Hence, using the expression for M, from (58, 10), we obtain the first boundary
condition &:

("—" MmO =0, memyrd L Crm L. (58. 12)
dp /pemi G ak

Here C, is the characteristic of flexibility to rotation of the support fastening.
With a hinged fastening C, = », with the absence of rotation on the contour C,=0.

We shall consider the stress T, at the contour to be proportional to the dis-
placement u at the contour, i.e.,

Ti=Xu for p=1, (58. 13)
where Azis the constant of proportionality.

In the case of axially symmetrical deformation the annular elongation ¢, ia
determined by the formula

a=2+2.
At the contour, let the condition
w=0 for p=1, (58, 14)
be satisfied. Then

u=ae; forp=1.

* See /XIIL 23/, /XIIL 6, and /0,19/.



Consequently, using the expression for s,from (58, 10), we bring the boundary con-
dition (58. 13) into the form®*

a® = —=—v — Cy. Cy=-L1 58, 15)
(d' ),_l+ (@) =0, = —v = Cp Cy=. (
The quantity C, above is called the characteristic of flexibility to displace-
ment of the support fastening,

If the support contour does not hinder the displacements u, thenC, = «»; if at
the contour u= 0, thenCz = 0.

Apart from the boundary conditions (58, 123, (58. 14), and (58, 15), owing to the
axial symmetry we have

$=0 for p=0 (58, 18)

One can satisfy all the boundary conditions relating to deflection by setting in
the first approximation

ﬂ=«%(p;_,,,)| .,{1%:, (58.17)

where o is a constant yet to be determined.

Introducing this expression into the equaticn (58. 8) and integrating twice, we
obtain @, where the constants of integration are determined from condition (58. 15)
and from the condition of the boundedness of the solution at the point ¢= 0. After
substituting the ® so obtained and the expressior (58. 17) in equation (58. 8), we in-
tegrate it by the Galerkin method. For this we multiply the left-hand member of
the equation by #dp and equate to zero the integral between the limits 0 and 1 of
the expression obtained. Thus we obtain a cubic equation in ®:

5100 4 3,00 - S0 = 3p, (58. 18)
where

[ 1 __'.'_+'_; vt 2ot gt — Tkl

= - 2 A+m |
[t sy |
e SR
R e

vw=5—0v, w=1—23w, vy=7--20n 4 182,

u"’l?—%'i 4ty vam=1— 4y 6wt
From (58.7) we have

dw
=2, w=a|dd const.
e 5 Pt

* In /VL. 7/ this condition is written in an erroreous form, and therefore in the
expression for n the sign obtained for C, is incorrect.
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At the shell contour, with ¢ = 1, the deflection is zero; consequently
1 /4
const=—a [ 8dp, w=a | 0dp.
Jrvw=ef

The relative deflection § of the center of the segment is given by the formula

1]
==t el
1 (58. 20)
The extremum condition for the pressure has the form
d _dp d= _ g 9 _ (58. 21)
& dw ad ' de *

Substituting in this equation the expression for p in terms of o from the equa-
tion (58. 18), we obtain the values of m corresponding to the extremal values of the
load

— 55—V 51 - 383,
35, '

MEPNY 5 T (58. 22)

L gt poh R _3ua]v -
o—bat ot () 3% 0 for o=,

Consequently the value @ = o corresponds to the maximal value of pressure pp*~
Therefore,

e =ttapp Rorg e, PRt Byt e, (58.28)
Sa Ss LN 3 L A

The dependence of p on » is shown in Figure 39.

As can be seen from the graph, after reaching the pressure p;‘“ , the further
increase in the quantity | m| from l“’ll to "‘zl occurs discontinuously (by a bang),
i.e., there is an instantaneous loss of stability. If, after this, one reduces the
pressure, then the deflection is gradually reduced and the value of | w | decreases
from l(n3| to ImJ. When the pressure becomes p:" , the bent form of equilibrium
becomes unstable for » * w, and collapse occurs (from the position D to the posi-
tion E).
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Following the terminology proposed in the article of G. A. Geniev and N, S.
Chausov /VL 7/, we shall call the buckling (twisting) of the shell at p™2x the loss
of stability of the second kind. K

But it can occur that already for p<p;’“ the shell loses stability of its axially
symmetrical state and passes into a moment state, which is usually not axially sym-
metrical. This phenomenon is called the stability loss of the first kind. The corre-
sponding critical pressure is given by the formula

2 Er?

P-=']—'r3—(——a-l_ 5 R

in the derivation of which it is agsumed that the radius of the shell does not change
under loading. In practice, in the case of a shallow segment even before the loss
of stability of the axially symmetrical state of equilibrium there is a considerable
increase in the radius of curvature of the shell, :n particular near the pole, due to
which at the instant of buckling the radius of curvature of the shell at the pole is
equal to some quantity R >R, and the preceding formula should be expressed in
the form

P A1 (58, 24)
VIin—w &

where Ryis the radius of curvature of the deformed shell at p = p,.

Attention has been drawn to this fact in /V1. 7/, where it is proposed to deter-
mine Rx from the formula

2
Rx"’—ﬂ. Hn'=H_ 1'wox|-
2Hx

Here H is the initial altitude of the segment and (Wok ) 18 the deflection of the pole
under critical load. It is obvious that in this way we find an average value of the
radius of curvature of the deformed surface, whereas the radius of curvature in
the neighborhood of the pole is greater than this quantity,

According to the theory of local stability, the stability loss of the first kind
in & complete shell should start precisely in the region of the pole, and therefore,
by substituting in (58, 24) the indicated mean value of the radius of curvature instead
of Rx, we shall obtain a larger value of px. Taking into account that with the sta-
bility loss of the first kind small waves are form:d—the length of each of which con-
stitutes only a part of the quantity 2a—and that near the pole the curvature changes
slowly*, we propose to take as R ythe radius of curvature of the deformed shell
with ¢ = 0. Here, for the type of deformation coasidered, we shall obtain a some-
what smaller value of py.

From (58, 1) and (58. 17) we obtain

=gt = @ ) =

Consequently,

1 2E8
gt =g +w).

(58. 25)

* For example, with hinged fastening v,<2.54, if v = 0.3, and in the expression
for x;the term 3¢ 2is considerably smaller than the constant part, even for
e=1/2,
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Equating the value of py to the value of p given by (58, 18), we obtain an equa-
tion analogous to that used in /VI. 7/:
St b p Sy S 58. 26
s.°+sq.+s.m l’3 I)Rl (1+v‘°) ( )
Calculations show that one can neglect the first term of the left-hand member
of this equation. Thus, to determine the value of w = wy(and therefore also that
of the deflection wox for which losa of atability of the first kind occurs) we have a
quadratic equation. Substituting for oy in (58. 25), we obtain py. If it turns out
that the values of wk are complex, then stability loss will be of the second kind.

The computations carried out show that the critical maximum pressure deter-
mined from (58, 25) or (58. 24), is half or one-third the critical pressure found
from the formula of Zoelly and Leibenzon. Initial irregularities in the shell shape
also exert a very strong influence on the critical pressure in the case of a stability
loss of the first kind,

We shall consider here the approximate determination of the critical pressure
for a shallow spherical segment on the assumption that the segment has a symmetri-
cal initial dent with respect to the pole, whose depth is f; at the pole, and the radius
of whose circumference is a;. When such a dent exists, the radius of curvature of
the segment near the pole will be greater than away from it; therefore, a local sta-
bility loss of that region is possible, provided the diameter of the dent is not small-
er than the wavelength of the anticipated buckling which is nearly symmetrical with
respect to the pole, and is of an infinitesimal amplitude.

In equation (57, 9) we set n?< m?, = 1/R_, where R_ is the radius
of curvature of the dent region at the instan% of bucklingn starts, and obtain

3
—-T'_,.Q'_;_.{___..

From the condition dT[/dm = 0 we find
m: =V R 1201 —wys.
But the length of the expected wave, as is apparent from (57.7), is

xR I = IV Rty 1200 = 7).

Consequently,
==VR. W 120 = ).

Let f be the altitude of the segment of radius ag without considering the dent,
i,e.,

f:—; a.’/2R.
The actual altitude of that segment before applying the load is approximately

(a*2R)— /.

Consequently, its curvature may be obtained from the formula
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w = (g f) e =

At the instant of buckling, the curvature of the segment changes owing to the
applied pressure (py) to the value

x; (p==0)=av/R.

Thus, the curvature of the pole region at th: instant of buckling will be

d ol _2gen 1 TR
TR w TR TR wral RO+

Consequently,

ot . 2/, .
_=7(~1+VAW).(1+7‘-VT2“__—J)),

R«
= 2 £
“TVIig-w & (58. 27)

Here as before we find the quantity m = wg from equation (58. 26)., The utili-
zation of the last equation for the determination o: the deflection due to the load for
a segment with an initial dent should not lead to a considerable error, since for a
shallow shell the deflection of the pole will be due not so much to the bending in the
dent region as to the general bend ing of the entire shell with the given boundary
conditions,

The solution given here was obtained in the first approximation. Making it
more exact by approximating the quantity # by polynomials of higher degrees than
(58.17), we shall obtain smaller values of the upp=r critical pressure., The limit-
ing value p, differs, as some calculations show, ‘rom the first approximation by
10-20% if one limits oneself to axially symmetric::l deformations. The solution of
the non-linear, non-axially symmetrical problem is so far unknown to us, and
therefore, at the present state of the theory it is risky to carry out stability calcu-
lations for shallow spherical shells without experimental verification, To our re-
gret, in the literature there are no data on serious experimental investigations of
shallow spherical domes. We did not manage, so far, to acquaint ourselves with
the recently-published work of this kind /XIIL 13/ In work /XIIIL 14/, known to us,
the experiments were carried out on spherical domes of considerable depth, with
base diameters of 2a = 40 cm, radii of curvature R = 25 cm and R = 52 ¢cm, and
thicknesses varying between the limits 400<R/t<2,000. For the critical pressure
at which the dome loses stability the authors of thit investigation obtained the empiri-
cal formula

pl=03a 2 (400 < <2000, 20° <0 60°).

e= (1m0 BN (1 -0 B, (58. 28)

where fi° ig the rise angle in degrees at the edges, where the maximum discrepancy
between the authors' experimental data and the results calculated according to that
formula reached 20% (in those cases when deviaticns from the ideal spherical shape
were noticeable to the naked eye).

At the boundary of the region of applicability of the empirical formula, # = 20°

We shall apply the above theory to the deteriaination of the critical pressure
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in such a shell. Let us take the data:

a=20cm, R=52cm, T":soo, ye=0.3; E=21-10% kg/em?.

It turns out that in this case symmetrical loss of stability of the second kind
can occur only under very large pressures.

The critical curvature at the stability loss of the first kind is

; = 0.983/’ R(x +0.67 {L)

Hence with £ = 0, from (58, 24) we find p = 1.16Et.z/R2 and with f = 1.5t we find
29 2 K o
px = 0.28Et°/R®,

At the same time, according to (58. 28) px = 0.258Et2/R2, Thus, even with
an initial bending equal to 1.5t, our theoretical solution gives a somewhat higher
critical pressure than its experimental value, This discrepancy may be partially
accounted for by deficiencles in the experiment, as in work /XI1I. 14/ it turns out
that in some cases the initial irregularities were clearly noticeable to the naked
eye. But the main reason lies, apparently, in the fact that the shells tested were
rather deep, whose stability loss cannot occur in the axially symmetrical form if
there are no large axially symmetrical irregularities.

The testing of two series of shallower segments has been carried out by R. G.
Surkin in the mechanics department of the Kazan' section of the USSR Academy of
Sciences. The segments were portions of a sphere with the diameter of the base
ring 2a = 200 mm; the mean values of the radius of curvature of the surface and
of the thickness were: for the first series with seven shells tested, R = 358 mm
and t = 0,454 mm; for the second series with four shells R = 495 mm and t = 0,460
mm., The samples of both series were prepared by hydraulic stretching of sheet
brass (E = 10%kg/cm?),

In the preparation of the shells, circular symmetry was well preserved.

All the specimens tested lost stability abruptly under loading, i.e., by snap-
ping. Then there occurred a complete inversion of the spherical segment with some
additional stretching as a result of the high speed of the inversion,

As a result of the experiment, the mean value of the critical pressure for the
first series turned out to be p® = 0.787 atm, which is 2/5 times the value of the
critical pressure according to the linear theory, and for the second series
p = 0.374 atm, i.e., 5/14 times the value of the critical pressure according to
the linear theory.

The calculated results and experimental data are given in Table XVIII for
v = 0.3.
Table XVIII

No t R @ 1y Ry accord-| pg accord-|px accord=| px
of the in mm in mm in mm ing to ing to ing to in
series (58.27) (58.25) (58.27) |atm
in atm in atm
1 0.454 358 —-0.144 | 0,048 605 0.767 0.683 0,787
11 0,460 485 --0.138 | 0.057 828 0,438 0.374 0,374
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A comparison between the theoretical valuer of the critical pressure taking
into account the initial irregularities according to (28. 27), and the experimental
values, shows that in the given case theory and experiment are in satisfactory
agreement,

In conclusion, we draw the reader's attentica to the article of Hu Hai-Chang
/XL, 25/ in which he considers the stability of a Finged shallow spherical segment
whose polar region is loaded by a symmetrically c¢istributed normal pressure, and
also gives a detailed investigation of the stability of such a segment under the action
of bending moments uniformly distributed over the contour, where in both cases
the deformation is assumed to be axially symmetrical.
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§ 59. Shallow Spherical Membrane under the Action of Internal Pressure
The exact solution of the problem of determining large deflections of an ab-

solutely flexible spherical membrane, whose rigidity to bending may be neglected,
was glven in works /XIIL 8/ and /XIIL 15/,

| dw _ 1 dw.k_i' (59.1)

E=r¥a@?, w==—--— =

Equations (58. 5) and (58. 6), in which one should set C = C! = 0, take the form

\ d _ - __k q
o g AT =Et{ek —o), e=75—r. (59.2)

According to (58,2) and (59.1)

Te= dir(rr.), Ty Ta= 2d_f (Ty).

Introducing this expression and eliminating m from (58.2), we obtain

2 o
RALLNTS YN S i
a anti ) Et(q xsr,)

Setting

w*— EB porar - L (Eqrare
=E-~(Eq?a/) ™, Ti=(Eg'att)ha, (59.3)

we bring the last equation into the form of the non-linear differential equation in

01:
i 2
P (k1) — 2k*+:l;=0. (59.4)

We shall seek the solution of this equation in the form of the power series

°|=b,+b.E+...=}§b.i‘. (59.5)

A=

We shall assume that this series converges in the region 0 &1, and that its sum
satisfies the necessary boundary conditions. Let

x==too = %+ b.s'+...=f}b,.im. (59.6)

Here (59.4) may be written in the form of the equation

& _
it 24 — kY2,
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Integrating that equation once, we find

3
4_!_ xp _Ei z
o=t 2fo. ai + c. (59.7)

Here c = bg, so that according to (59, 6)

9 _p, for E=).

Besides
B L .
S“d= —l—d5=5di/[ b,,Z":],
v Y d
o I 8 =0
— 1 —_— ! \ En : - ! \ d n
- - —;‘_‘{ Can ] = ;u; LN (598)
[ Ebnf"J 0 =l
R}
where

s 1 .
=1, dy=cy, c,+;~ Cinbn=0 for i> |,
(]

Am|

dn= 2N (31— m)crdnn for mo1. (59.9)
e

sl

Introducing these expressions in (59. 7) and integ -ating, we obtain

=1 BE—-2 N _ 2 e,
a=g=bt 80 Lt 1 n+2) (59.10)

Na=t)

Equating the series (59.10) and (59.5) we obtain the relations

d d 2 —
by =k*— 2 y = — [ il S
1 e b2 3%.,...,17‘ PO (59.11)

Further, from formulas (59,9) we calculate the ¢ efficients

dim Do, g 301t
b, byt

2 s .
d.=—-.~.‘(2b1‘—3bob.b; -—:—b,‘b;). (59.12)

Introducing these in (59, 11) we obtain

1—2 2 (1 —}) (1 =213 — M)
b p— o T —— . R L Tl
1= el bs Rt b 655 (59.13)
where
A= b2 (59.14)

is proportional to the curvature of the spherical membrane. Thus, ac-
cording to (58.5) and (58.13) T is expressed in terms of bg and A,
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Ta= Z(rT)=T1+2 "—d:' =

=L VEFE (b3 4 @ DO (59, 15)

To determine the deflection function w, we make use of equation (59,2), whichbyuse
means of (59.1) and {59.3) is brought into the form

¥ ' ' a - y
& ST 3 \bd b

ay=—+ (% 2% L 1),

Tl 2% T (59.16)

we obtain

K3 S Voo .
W=%E—a:]/qé(aﬁ-ali%-az:u—...)+w.,.

The constant of integration wq is equal to the deflection of the center of the membrane,

i.e., w = wq for t = 0. On the other hand, let the membrane contour be clamped,
i.e., w=0for E =1,

Consequently,

ak lr
W= ———+4a ‘L’féa,
(] 2+ Et n

w= — "2—2-'(1 —E)+aly?(20,wE2an€").
n=0 n=0

(59.17)

At &t = 0 the geries (59.10) converges to the value of by, where by > 0 should
hold, as Ty is the tensile stress.

In the general case

n

_ e BTN 4 u
a=by AR wD_. ETETTh +R"]’

fw=0

where

fepd]

Ral=| Y e [ <wes V' ax
G+ DG+ (n+2)(n+3) )
i=n+1

On the other hand

- n
L.: - N =Zd,e1 + ) di
* =0 =0 il
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Consequently,

sku!<|(:§—2aﬁ') r=-2)(n +3). -
f=n ! ol

For & = 1, this gives an estimate of the residual term

|R-(m<|—f§—gdf{:l(nw(nm)l, =,-=Zm.

In what follows we shall carry out the calculations by limiting ourselves to four
terms of the series (58.5) or (59.10), The estimate of the residual term of the
series according to (59, 18) shows that the error ‘hus admitted is not large if A<1,
The remaining undetermined coefficient b, may b2 found from the condition that the
annular elongation e;be zero at the edge £= 1,

This gives the dependence

Ty —vTi=0 for & =:1,
which after the substitution of the expressions for T; and T; from (59. 13) is reduced
to the equation
1 2
(l—_{}bo'—‘(s'—“)bo““;(s -vb—

_v)
23—y =0 (59.19)

Some results calculated according to these formu.as are given for v = 0.3 in Table
XIX,

Table XIX
! ’ b l = | —n | -u ’IR.(I)K) r
Q 1.113 0,341 0.0452 0.0x 97 0.0009 V]
04 1.500 0,260 0.0493 0010 v.I6 0.173
0.9 1.012 0.098 0,0628 0.0 0.0021 0.879

We determine the stresses T,,, T,, at the center and the stresses T tar T2a
at the edge from the formulas

Tio=Ty= anQ, Q={(Egiattyn,

3 K]
rm=§—’2b,—, T,a=%2(;f+1)o;,
f=f f=0)
3
=% ey
w, = — % 4 a(%) Za, (59. 20)
=]

The numerical results found from these formulas are summarized in Table XX,
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Table XX

=
A Ty0fQ T14/Q ;" (Ef}qa)*l*
0 0.428 0.328 0.662
0.2 0. 0,321 0.952
0.4 0.375 0.292 1,157
0.6 0.340 0.267 1.386
0.8 0.291 0.233 1.706
0.9 0.2 0.206 2.006

From this table it follows that with increasing k* the stressea at the center
and at the edge of the spherical membrane decrease,

In the special case when k* = 0, i.e,, k= 0, we obtain the well-known solution
of G, Genki for a flat membrane with a uniformly distributed load (see, for example,
/XII1, 24/. Calculations carried out by S. A. Alekseev /XIII 26/, have shown that
the influence of the coefficient of transverse compression v on the value of the de-
flection and stresses is quite considerable,
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$ 60. Making the General Theory of Shell-Snap More Accurate

The theory of shallow shells which we have used from $ 17 is based on the
assumption that the condition 8,2 < 1 is satisfied, where 0, is the rise angle of the
part of the shell considered. The loss of stability of non-shallow shells is frequent-
ly accompanied by a dent, corresponding to a body angle 28,. This can be consid-
ered as small only in the first approximation. For example, E. Zechler and V.
Bolley of the California Institute of Technology, while testing hemispherical shells
under the action of an external uniformly distributed pressure p have found that

=015, 2,03 (2%l 125, (60. 1)

where |wo| is the dent depth and o®is the critical stress. Already in this case the
application of the theory of shallow shells for the determination of elongations of
the middle surface may lead, each time the stress functions, etc. are introduced
to an error exceeding 2%, and therefore the total possible error of the solution will
considerably exceed the error admissable in the thepry of small deformation of
this shells which, as was shown above, 18 a quan:ity of the order of the relative
elongation ¢ (within the limits of elasticity), in comparison with unity.

At the same time, there is a tendency to bioaden the range of applicability of
the above theory of shallow shells, allowing a she¢1l to be called shallow if

H_ & 1 4 (60. 2)
w"wm <3 OF W<

In § 26 it had been noted that at the boundary of the region (60. 2) the admissible
error in the theory of shallow shells can be very considerable. Here, we shall con-
sider this question in great detail, fixing our attention on the possible loss of pre-
cision in the determination of elongations for a medium deflection, which was al-
ready pointed out in § 15.

We shall refer the middle surface of the sh:1l to the lines of curvature, Let
a line element of that surface be defined by the fcrmula

dst= AW - By, (60. 3)
where A and B are quantities of the same order &8 the radii of curvature of the shell.
For small deformations with arbitrary disflacements, the elongation and shear

of the middle surface are given by (3. 5):

w=ent ol tehted u—entjlhte+eh  (60.4)

* See article /XIIL 7/.
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(60.5)

Unfortunately, the expressions (60.4) contain squares of the normal as well as the
tangential components of displacement, They may be somewhat simplified if the
displacement components are comparable with the shell thickness, but are small in
comparison with the other linear dimensions, Let the shell be thin, i.e.,

4

rke {60.6)
For ordinary metals

£p~0.001 —0.003.
A8 can be seen from (60.1)

=, gy~ (60.7)

Since in the snapping phenomenon weare dealing with displacements and stresses which
attenuate rapidly from the center of the region toward its edges (the radius of the
region being small), then according to (60. 7)

djw| |w] vy, dwl el Mwyl T
pAL-SUE LAY L i, TR L., TR,
Fitadriad b b Al Se : R P

1 gow\ 1 a-)l -

—_f — —~— ] — ~En

A‘(dﬂ) I_F(dl ’

As has been shown in § 15, the tangential displacement components are small in
comparison with w, If, for example, uew}’3 then

Low lom 10wy oo =2 1.2 60.8
A AR SR AT~P 5w LT (60.8)

Thus, &1, &g, €13 may be differences of quantities of the order of ag There-
fore in determining the elongations there may be a loss pf precision if one is not
careful in retaining quantities of higher orders of magnitude.

From (60.4) it follows that
-

&n=-— ﬂ;'i"l_';“fl;-“

N

Consequently, as

€~ Sp, e.;~¢"~z:“, -,~c:" 1,2,

then, neglecting tp in comparison with unity, we find

|-c
Pl .

y=ent %tzz-i-%"f'i-
1.2 (60.9)

5122611(] -- %-f){—ez.(l - %-;)-]—o.._._
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Further, according to (60.8) and (60, 5) we have

1 dv w 1 dv w 1 2 1 4
€0 = — — —_ - amms— € — — 8 —— @ — — @
2=y 5ta BB /«,+ nTRH T g™
Taking into account that
® 3.
;..a,,, 8 ~ip, ...,

in the first approximation we may take

3
\6-‘{‘:— B or ‘v:—J B—wdﬂ,
o R g R (60.10)
if v=0at f$=0. Consequently, with the agsumed accuracy
1 ¢ 1 ’deﬂ P
I 5
“=-rwwn) A L2, (60.11)
0
‘" Now we have
1 ow\? 2 odw .Bw 4 1 du\*
P (LW 4 2 0% [Bge 4o (Y L
o (3 op B8R, #J Ry B - (B o8 (60.12)

Let e‘11 PR m.‘{ be the respective quantities for the state of the shell before snap-
ping, £}, €3, £;5 the elongations in the buckled state, and u, v, w the additional
displacements. Then y

O =ehten+ %(8:7+elz)z+%(ﬂ-{ + @) +% () o)

Assuming that the first equilibrium state may be considered as close to the mem-
brane state we have
G=al ey, g

If, besides the principal equilibrium state, a stable equilibrium state under
the same external load is possible after the snapping, then the total energy of snap-
ping must also be minimal in the latter position., Thus, the problem is reduced to
the minimization of the functional

3 =f}j‘{§[( 5 + '1)7“‘< a + 61)2-{-1 v( el +s,)( g;+€2)+
+(L;—‘) ( .:’+ 5“)2}‘{" g[ x ‘+‘7§+2\ arg 4 2(1 —v) x'f._,] —
- W}ABde

K=Eti(l —v), D=E8/ 2(1—W). (60.13)

Here the integral is taken over the entire middle surface of the shell; W is the spe-
cific work of the external surface forces; the wo -k of the contour external forces
is considered to be zero,

We determine the changes in curvature from the formulas

330

-

I v

OF PCCR {uiwiiy



1 94 ; A de 1 84 N ;
II—E d—g-m!‘i‘; ‘é;. Xn—A a 1% 1 ‘1-.'2; (60.14)
The elongations are expressed linearly in terms of u and v with the aid of (60, 10),
and therefore the latter enter in the expression for the total energy in a power not
higher than the second, Due to this one obtains, in minimizing the energy, equa-

tions which are linear in the amplitude of the tangential displacement.



§ 61, The Lower Critical Pressure for a Complete Spherical Shell

The upper critical stress for an ideal spherical shell under uniform external
pressure is given by the formula

o PUR Et (61, 1)
U= "o RVIO—) °

It is almost four times greater than the experimental value (60, 1).

In putting forward their explanation of the discrepancy between experiment
and the classical theory, Th. von Karman and Heue Shen-Tsien made the assumption
/XIII, 2/ that when pressures are considerably smaller than py, then beaides the
state of stable equilibrium of the shell, there is possible a stable equilibrium state
which retains the spherical shape with the formstion of a dent; also, a "jump" or
"snap" into that buckled state is possible if the shape of the shell is imperfect or if
the applied pressure is pulsating. However, these authors did not succeed in giving
a satisfactory solution to the problem of determ:ning the minimum pressure in a
non-linear state. K.O. Friedrichs also had to =dmit, at the end of his work /XIII, 4/
devoted to that topic, that the question of the minimum pressure, called the lower
critical point p,;, remains open, In the exposition of this question we shall follow
our article /XIIL 7/.

We shall take the center of the snap regior. as the pole of the spherical shell
and meridians and parallels for the coordinate 1.nes. Then in the formulas of the
preceding section

A=R, B=Rsinb, ii=d=1o =o'/R; =0

Let the snapping be symmetrical with respect tc the pole. Consequently,

v=0, ¢yy=mxp=e=en=<0, ¢u=(%:-+w):R;
'z-eu-%(nctgﬂ-{—m. u={(Re; - w)tgh, -:z;’%‘%, (61, 2)

2

1 dw i rdw

-lf.dw Lvdm
=R dn+u)° xaot )
Xy = w Ct 'g_.}_qﬁ
R R 8"

No loss of precision can occur in the dete:'mination of the work of the exter-
nal forces because, limiting ourselves to the first approximation and setting
sin #=4#, cos 0 =1, we have

W o= — p (w4 w'! )=2—£L(w+w‘)=ﬂ,;ﬂ)—i(w+a’ R).

For quantities depending only on uniform compr:ssion, H varies between 0 and =.

Quantities characterizing snapping can be different from zero only in the
region 0 < 8 <Ho, and therefore according to (60.13)
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We assume that
d
u=0, w=0, %:0 for #= 6, (61.3)
This is equivalent to the agsumption of a rigid annulus at the boundary of the expect-
ed snapping region. According to the symmetry conditions we have

u=0, %=o for 6=0. (61.4)

Besides, one may set

Consequently,

5,
2:2: — 9K (1 4 v) R%aM +f{§( &4 G Q)+

SO (SIS ST e

The total energy in the first form of equilibrium is

3 = — 4nK {1+ )R,

The equilibrium state is stableif the energyfunctional 3 in that state has a minimal
value, The equilibrium state before the snap (zero state) is stable if p<py. As

was shown in /XIIL. 2/, other stable states of equilibrium are also possible if the

pressure exceeds some minimal value py, where py< py. It is obvious that with
p > py there are at least three possible equilibrium states: a stable "zero state",
a stable non-linear state, and an unstable state in which the graph of the quantity

3 as a function of the depth of the dent has a saddle-point (Figure 40).

Figure 40
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At p = py the stable and unstable states of equilibrium merge into one state,
in which .7 has a parabolic point, i.e., the first and the second variations of 5 are
zero, The total energy in that state is greater tnan in the zero state, Consequent-
ly, if p is only a little larger than py the energy of the non-linear state is greater
than in the state before the snap.

At some value of p greater than Py. the to:al energy of the non-linear state
becomes equal to the energy of the zero state. ‘Ve shall denote this value of the
pressure by pm. In the case under consideratioy, pm differs but little from PH.
The computation of py is simpler, however, thzn that of Py, and therefore in what
follows we shall frequently limit ourselves to the determination of pm. Let us also
note that, as shown in Figure 40, in order to pass from the zero state to the stable
non-linear state, the shell must overcome an en2rgy barrier which tends to zero as
the pressure p approaches the value py. But this barrier may also be surmounted
for py<p <py if there exist initial irregularities unfavorable to stability, pressure
pulsations, etc. In the case of a complete shell or a steeply sloping segment, the
surmounting of the energy barrier may also be ficilitated by a redistribution of the
energy between the dent region and the remainder of the shell, and, in the case of
a shallow segment, by a redistribution of the ene¢ rgy between the shell and the sup-
port, which is always elastic in practice, It is :lso possible that so far our theory
has not taken into account the most accessible ncn-linear forms of buckling {for
example, non-symmetrical forms), in which the barrier is small and can be sur-
mounted for very small irregularities of the she!l which always exist in practice.
In any case, we cannot consider the mechanism of the "snap" phenomenon as entire-
ly established, although many attempts have been made in that direction®*. The de-
termination of the upper critical load, taking into consideration all the real con-
ditions of the problem, is, as before, the main rroblem of the theory of shell sta-
bility. However, the investigation of the non-linzar equilibrium states—in particu-
lar, the determination of p,--is also necessary, as it extends our knowledge of the
loading capacity of shells,

According to the method outlined for solvir g the problem, we set up the ex-
pression 3'=3 — 3!, retaining, together with tte principal terms, also the terms
of the order of (dw/df)®, Introducing the notatio1s

C=0/8), 62=p (61. 6)

and taking expressions for u and v satisfying the conditions (61. 3) and (61. 4), name-
ly, setting

it =cb VTRA (%), ®=aRg(3), h(1j=gvl)=%i-(C=l)=O, (61.7)

we set up, according to the Ritz method, equatio s expressing the condition that
the first variation of the total energy is zero:

93 g, 2 g, 2 . (61. 8)
da ob de

Besides, to determine p,, one has to fulfill the condition:

3=3",i.e.,3 =1, (61, 9)

and at p = pH the second variation of the total energy should be zero, i.e., the
additional condition

* See, for example, articles /XIIL 3/, /XIIL 5/, /XIIL. 9/, /XIIL 14/.
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*0‘3/0413, 9%3/0adb, ¢*Ildadc
1013,/0:1615, 913/3b%,  623/0bdc | =0.

429! 23/ 5hAr 515
}oB‘Oadc. 323/dbdc, 823/dc? (61.10)

should be satisfied. For a series of functions h and g the corresponding values of
Pm had been determined to the first approximation, i,e., by the usual theory of
shallow shells, and to the second approximation by the more accurate theory of

$ 60. It turned out that the second approximation gives a value of py smaller by
5-7.5% than the first. Here, it should not be forgotten that in the case under con-
sideration, according to (60.1) 8,=0.15, i.e., is less than one-fifth the boundary
of the region (60.2). In our opinion, the application of the ordinary theory of shal-
low shells should be limited at most to the region

Ao 8o (61.11)
2u 4R

From the considered functions h and g, the smallest value of p,, is obtained from
the functions

h=(1 201 1.20), g =1t C)’(l-}‘U.S(). (61.12)

for which in the first approximation

PuR . £ (61.13)
Pul= g =02 i
We also found the value
R Ft
o, = 2l = 0193 = (61.14)

This result had been obtained on the assumption of rigid fixing of the edge of
the snap region. In reality, however, the snap region interacts elastically with the
remaining portion of the shell, and therefore we shall give another determination
of the quantity py, where we shall confine ourselves to the solution of the problem
in the first approximation*.

From (60. 9) and (61. 2), setting cos =1, sin =0, we find:
0 = L 1rd Agdwey (8
n=ents ""—R(de +w)+w(m)’ £ p(a +w)'

Eliminating u, we obtain:

d 1 dw 1 sdw \?
w=teh+s f=—p G tm(E) (61.15)

Whence, and from the equilibrium equation

d —
a{M9= Tz,

* For a more comprehensive exposition of the contents of this section see
article /XIIL7/.
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where Tj and T3 are the additional membrane stresses, we find the relation

)
d Jdd
8 S(Ti+ Ty = — Etf, T,-}-T,r:—Etfe——l»C.

Let
Ti4 Ta=0 for &=, (61,186)
Then
9,
T+ rz—Et‘fl‘jB.
Further

f T\ TAdS = f Tib S (T9)dD = - (Tufy =0,

if at the boundary of the snap region the condition
Ty=0 for 6=¢, (61.17)

is satisfied, Therefore

[
L (a4 dtamm)on =
Q0

; L3
=E‘ofl(rx+ Ta)' — 2T, T3 (1 + v)] 46 _Eo e oo,

Let
@w=aRg(l), H*=b. (61.18)

Introducing these quantities in (61, 5), we obtain after rather lengthy calculations

3.-275. Cua® +2Cia + Cy, © +C";" — eCua?, (61,19)
where
S S L N T P
RYIZ( = " e ' ! !w i

1 N 1 1 i
c,=4of:(§££)’dr., Cn=ufg2¢:, C.:=Jg{;‘f('%)ﬁdc} d,
1 1
Cu=6f{tf‘(%)zdlrdl. (61.20)

Let us introduce the new notations

G S e T
2Cyy ’ T VCICH : (61.21)
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Then the energy functional is brought into the form

23,C, 1 a2 M
Itam 22 g2 g8 40,00 - e T e, (61, 22)
i<l F'( A0+ PR

We determine the value of py from the equations

9P g 92 (61. 23)
28 0, du o,
23*  #3* 913*\1
. — (==Y} =0,
| gt ( dl&p) (61, 24)

from which, after some minor transformations, we obtain

0,_0

.=
65

ple | — B, _x-+?‘_x+%
2

1 3
= = 8h 4- 8,02
= (20t ) (61. 25)

For the numerical determination of p,; we shall assign to the snap region the damp-
ing function

g=e" (1 kL) (61, 26)

This choice is explained by the fact that in practice the influence of the snap extends
over the entire shell and the parts of the snap region are conditional in the sense
that with § > 8y or, what amounts to the same, with t » 1, the buckling becomes
small and experimenters do not distinguish it. We shall assume that in the expres-
sion (61. 26) the pumber taken for n was such that for [ >1 the deflection becomes
negligibly small. Then, in the given case the conditions (61. 16) and (61, 17) are ap-
proximately satisfied and in formulas (61. 20) one may take infinity instead of unity
as the upper limits of the integrels.

On calculation we find k=~ 0.7n,

c.-L;‘-ﬂz 016 5‘;;—, h,=8° for n=4,

1 —
8, =9° for n=>5. (61, 27)

In /XIIL 8/ and /XII. 168/, R.G. Surkin has considered the generalization of
the theory given here to the case of an ellipsoidal shell, elongated along the axis.
Obviously, the stability losa of such a shell should begin in the equatorial region,
where the radii of curvature R,and R; have the greatest values. In
consideration of this fact, the author assumes that a local stability losa occurs in
the equatorial zone, and an elongated dent with elliptic base is formed whose great-
er diameter is oriented parallel to the axis of revolution of the shell. Let a== Z_—»
and B be the Gaussian coordinates of the middle surface of the shell, Then thk
dent region may be defined by the inequalities:

—aLaa, —Bh<BLh, (81, 28)
where o,= %,/R1, B, = y/Ra, if 2% and 2y, are the linear dimensions of the snap
region in the direction of the meridian and the equator of the shell. With the intro-
duction of the independent variables t=a%a,*, W= p'/?, the contour of the snap
region is determined by the ellipse {4 y=1.

As from geometrical considerations
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b= Ry/Ri= as¥/?, (61,29)
the dent region may be determined if one knows one of the quantities ay and ﬁo.

We shall approximate the displacement components by functions of the form

a=pda’RiA(E, m), v=pre;?BRj (i ), w=)a!Rizt, ), (61,30)

where pi, g2, » are the parameters required, snd the functions h, j» and g should
satisfy the boundary conditions:

BE =/ =0 for b:zq=0, t4+q4=1,

) (61,31)
g, m=1for i=2=0, g(¢ n=0fortfn=1.

The smallest value of the lower critical pressure Py was obtained with the following
functions, characterizing the snap shape:

B g =emmtin] gt 4 " — ka(E? 4 1)),

JtE, 9) = g-ritrn [L— & (E 47 — ks &+ ).

g6 M= Crn ]l — k(& ). (61.32)
Here the boundary conditions (61.31) are approximately satisfied, if for n one takes

such a number for which the deflection at the boundary of the region of buckling
becomes negligibly small,

The parameters p, p;, A, 3,, and the value of py corresponding to them,
were found from the condition of minimum total energy of the system, where k,
ky., ..., k, were taken as equal to the numbers “ound by trial for a spherical shell.

Results of calculations carried out for var ous values of § are summarized
in Table XXI,

Table XXI

Pu RYVED 0414 0.284 0.222

Compariason of the data in this table with tte values of the upper critical
pressure calculated by formula (57,17) shows that with a decrease in §, the ratio
indicated increases, and with 8= 0,333 it becom:s almost equal to unity. This
shows that with the increase of the shell elongatinn the influence of the non-linear
factor decreases,

In conclusion, let us note that the solution Jiven here for an elongated ellip-

soidal shell should be considered only as a first approximation, whose error in-
creages with the increase in eccentricity of the generating ellipse.
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§ 62. Some Remarks on the Method of Solving the Problem of § 61

In solving the problem, von Karman and Tasien /XIIL 2/ tolerated, as was also
noted by Friedrichs /XIII. 4/, two substantial errors. First, they arbitrarily as-
sumed that £,= 0. Second, the problem of determining the snap form and the pres-
sures under which the functional of the total energy has the minimal value was re-
placed by them by the problem of determining the smallest values of the pressure
without concerning themselves with the minimization of the energy (the Lagrange-
Dirichlet principle notwithstanding). According to formulas (61, 22) and (61. 20}
this function has the form

F=fi\ p)—pf 0, w).

According to the method used by von Karman and Tsien, we find consecutively

o _2h "f==o p=2h 2% (62.1)
N ! g T oon
99 _/9%h 0 l __8fi N of
on oA Iy an) ( ) (62. 2)
B (O of A /ﬂf,)_
N FIXPREY FINEFTY AR (62. 3)

The equations obtained for the determination of ), u and py differ considerably
from the equations (61, 25), with the exception of equation (62. 1).

Generally speaking, both procedures lead to identical results only in the case
of small displacements, as then the terms of order higher than the second in the
deflection amplitude drop out of the energy expression.

In that case we have
I = {F () — pFa ()]
and, following von Karman, we find

9 —pFy) = =fL %
: Q(Fi—pF)=0, p A 0,
9 o __ 00
op—O or o po,u

-=Q,

This latter coincides with the equation §3*/dp=0. Besides, (61. 24) is satisfied,
and also the equation 5% = 0, Thus it turns out that in linearizing the problem, one
may with equal justification make use of the equations (61, 23) or (62. 1)-(62, 3),
where the difference between py, py. and py vanishes.

Turning to work /XIIL 2/, it should be noted that as a result of the superposi-
tion of the two errors indicated above, a "solution" was incidentally obtained, close
to ours (61, 27). However, retaining the assumption ¢,= 0 and the snap shape
g{Q==(1—2C), assumed in that work, and applying the correct procedure for the
minimization of the energy, one obtains:

PR O &t
2t Vi=+ R’
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An error of another kind was tolerated by Friedrichs {XIII.4/: in deriving
formula (7) of his work, he relied, in fact, on the condition (61,16), without con=-
cerning himself with the actual fulfillment of that condition, and therefore the value
obtained by him for the lower critical pressure 1 =0.13£¢/R VT —+ is unfounded,
Note that in determining p,; one may limit oneseli to equations (61,23), and replace
(61.24) by 2n equation obtained by minimization with reapect to A or u of the expres-
sion for p, obtained from any one of the equations (61.23), We propose that the
reader convince himself of the correctness of that assertion.

In article /XI11.10/ it had been proposed to consider the whole spherical
shell after the snap as consisting of a dent with a circular contour and of the re-
maining part of the shell, where it was assumed that within the dent region the de-
formations are attenuated according to the law of the edge effect, The joining of
both portions of the shell had been provided for in such a way that the displacement,
angle of rotation and bending moment vary continuously on passing across their
boundary, and there is a discontinuity in the shea-ing stress which is taken into
account in smoothing out the imbalances of the approximate solution by the Galerkin
method. Unfortunately, in his solution the author did not consider it necessary to
vary the dent radius in addition to the deflection amplitude, and therefore he obtained
a negative value for the quantity p,,. We arrived, by correctly solving the problem
in the same setting in /XIII. 11/, at the value

s_.—_"?"=o.|o B (62.4)

Apparently, the difference between that forraula and formula (61,27) is ex-
plained by the fact that in deriving the former, one had not ensured, as indicated
above, the smooth variation of the shearing stress,

In work /XIIL 12/ has been considered the dztermination of Py by integrating
the equilibrium equation by the Galerkin method, the Galerkin equation being set up
in the form (25.23), as it is obtained from the principle of virtual displacements.
Here the equation of the components normal to the surface of the shell was multi-
plied during the integration, not by the deflection function as is usual, but by a
variation of that function taking into account the variation of the deflection ampli-
tude and the snap region.

The deflection function was approximated by the expression (61,26). The
value of p,, thus obtained differs from (61.27) by 1288 than 5 %,

We also call the reader's attention to articl: /XIII.27/, in which it is demon-
strated—proceeding from general considerations— that in determining the critical
load by integrating the equilibrium equation by the Galerkin method, it is necessary,
in order to obtain a solution with an error of the second order of magnitude in com-
parison with the error tolerated in the choice of the approximating function, to mul-~
tiply the left-hand member of that equation precise. y by the variation of the approxi-
mating function,



Chapter XIV

A METHOD FOR SOLVING BOUNDARY VALUE PROBLEMS FOR
NON-LINEAR EQUATIONS IN THE THEORY OF SHALLOW SHELLS

In the preceding chapters we considered approximate variational methods of
solving non-linear problems in the theory of shells, The method set forth below for
solving non linear equations of a cylindrical shell, based on the application of the
method of integration in series form, is really a general method for solving non-
linear boundary value problems in the theory of shallow shelis, The method is illust-
rated by an example of a cylindrical strip, rectangular in the plane,

§ 63. Large Deflections of a Rectangular Cylindrical Strip,
Rigidly Fastened at All Edges

19 We shall consider a cylindrical strip, rectangular in the plane, subjected
to the action of a uniform external pressure and rigidly fixed at all the edges, Let
R be the radius of the shell, 2a the length of the strip along the generators, and 2b
its width. We shall take the origin of coordinates at the center of the strip, the ox-
axis along the generators, and the oy axis along the directrix. Since the generating
and directing cylindrical surfaces are geodesic lines, x = 0, and consequently, the
fundamental relations of $24 are considerably simplified. Satisfying all the geomet-
rical boundary conditions, 4=v-—=®=dw/dx=0 for x="ta: u=v=w—=0w/dy=0
for y=—1b we find from (24, 36) and (24. 53b) the following boundary conditions for
y and Mg

at the edges x = fa:

(63.1)
=22 R0 aw="7% +e+) 2 =0,
My; —eMu =0, M2 =0; (63.1a)
at the edges y = b:
o B 2 = .. 2 (63.2)
ha($) o ow 0, g:(¥) F +e+ )W 0,
My — My =0, Miz=0. (63. 2a)

The boundary conditions & ($)=0, k:($)=0 mean that the respective edges are
inextensible.

The functions

Max — My =2f-(~ 1y om(denter

Y S _ Va(y)cosegx
My — vMn Zf..( T

o= § fan (= 1)mta S0 omE S8 he
M.,Sl+ ) 2, 1 A )

341



Gk

DL T
OF FOLL Waildiy
where
fm(x) =1 — (— 1™ cosamx, 9a(¥):z1 —(—1)"cos fay,
m na=19 3 P Om = =R (63.4)
a [
satisfy the boundary conditions for the moments and the Codazzi compatibility con-
ditions expressed by the moments:
9 (Mn —vM,) _ yl=
ey 4y oy 0
9 (M — M) _ 4 _f)'f’Lu_ =
(=0 (63.5)
If one denotes the deflection parameters by W, . then
®Won =D frn{2-Pa)}, D' = |YEL.
The functions

M

=L aY), My=2(y - 09,

0 (63.8)

satisfy the third equilibrium equation (15.9) without taking into account the tangen-
tial stresses, Therefore the general solutions of that equation will be

My = M), +%+(_}2—+:")% M= My + %-}-Qu%

— oMy By B 5l

(63.7)
where y and Yq are arbitrary functions, and :'z\‘-,, is ex
by the elasticity relations (24, 19a).
l‘. the expressions

pressed in terms of Mji
Introducing (63, 3) into (24, 19a), we find for

m a

sz =D’ 2/}" (— 1y P= t *c:s By ,

A
xj3= D'

=0 Sma (— 1™ B (}]_,,,_c:s: o
n

Jrn(— 1ymen S0 mXSinBay

‘ma
Let us find the stress function .

(63.8)
The function

= %(pzx’ + 200+ Y |Anl n (x) oS 3my +
Ml

+ BaMn (y) cos aqmx| +

where

CrnncosanxcosBay, Cop=0,
m, a0, 1,2

(63.9)
Lon(x) 2= (:&} . _pl; — acth aﬂm) CtPmx+4 xshfmx,
Mo (y) = ('_:% L

= :m—-bc(h ba,,)cha,.y-{—ysllauy

(63.10)
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(‘k ooy o ‘L'< o Tl
exactly satisfies the boundary conditions g, (%) = g;(§) =0 related to the angle of
rotation dw/on.

Substituting 4 ($)=+4:($) =0 in the boundary conditions, and expanding in a
Fourier cosine series, we obtain a system of equations for determining the unknown
constants py, pa, Ay, By:

Pr—vpi=Y Cog(~ 1)ah; p,—vps =Y Con(~ 1)78%; (63.11)
me=] =]
N opyme N )
fiBa 4(1:02%(@ " Ahl:pm =EC"(7 (B — val);
bm . &
me=1 <"k + r P

S

foan— 2D 2 B (Zh b EC“' (— (- o),
Lo B

mt ( F ) =t

@m (63,12)
where fk and f;{ are the known quantities
{1 + v)a: A
Ja=(3—V)archap — ——— 2
shagb
14 ) g2
K=@-hcipa - L0,
3 3
" (63.13)
Substituting for y and o in (24. 26a), we obtain
K’ Crn (85 + BL)? OS amX cOS Bay +
m om0, 1,2 3 ...
D L0 X Py (V) _
+2 2 O
m, ne=f, 2,3 ...
=D fan f, [(— ™+ cos apmx ¢os Byy 04 (1) ¥, ()
mn jrs P) !2
moa,ra=l2.. 3" -
(— )Y+ gin 5 xsin B,y sin a,sin By
amPro By ' (63.14)

Here, taking into account the formulas

2cos?amx =14 c052amx; 2sin%anx=1 — cOs 2 amx

and after the cancellation of terms, the expression in the square bracket reduces to
the double series

Y DancosamxcosBey, Doo=0.

m, gm0, 1, 2, ...

Consequently, equating the coefficients of the same cosines, we shall find an ex-
pression for the constants Cp,;, in terms of f,,. Thus, the compatibility condition
will be exactly satisfied,

For the coefficients C_ , we obtain from (63, 14) the expressions
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‘ s m L

‘," r. «.ii i K’ﬂ‘an.'f'% an-'l::l-=0"0mo.

o b

K'B4Con=D"Dua, m, 1 =1,2,3,...,
K0 G+ B Conm Lo S D, 63.15)
n
where *
a b )
2ab Do = jj z frmnfrs[*] cos mxdxdy k=1,23,..,

—a —=d Moz sl 2.

a

»
%ab Doy = j J‘ 2 Fomn frs | cOs Bry duady |,
1]

—a - m, a,r, sml 2.

a &
ab D= j‘f Fmnfrs[*]cOs 30x cos Py dxdy,
~& mr o os=i 2.

k=123 ...

In these equations [*] stands for the square bracket appearing in the right-hand mem-
ber of (63, 14),

Hence, after some tr: nsformations, we obtain:

_”RH

2Dhl= E n mn("

12 :
m, A=l 2,3,

fun et — 1Y ,.«-u"‘*’ Tmrs (@) Vg ()
+ 2 [ i Sm :l.

Syt

2D0.= frrkfmn

m.pel, 2, 3.

2 Smn S (= D" [!,.,.@ mm]
a2 3, £n 8

_ itk
ab D =ab EIIM/I" 1

’}_12
%m a

ok
2( — VY fin frarl e (B) + 0 ( — 1Y *% frn fonrd i ()] 4
" ™ o oo [ g (@) 05 (0 L (@) P 8)
o,Ba af 2mds ]‘ (63'16)

monor el 203

where for the integrals we wrote

a
Imn (@) = fcos 8mX COS 23 € COS Bpx dX =

= Ea (81 am - Bpbmrm - Wnirer),
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lm(“)"'f!lnc.xsln arX COS AN dX = il Warllad Y
—-a
= Brent s —dnin)
(380==1, for i=0, §*=0, for i#0).

Thus the compatibility condition {24.26a) and the boundary conditions of the problem
are satisfied exactly, by serles,

Now we have to determine the functions of moments ¢, and ¢: from the
general solutions (83.7). We shall seek the functions ¢ in series form

¢1=X2A,ncosﬁ,y—- %x(y’ — b4 2 EAmnsinumxcosﬁny,
Ay .

mml pen)

¥z =y2 Bio COS dmx — f—y(x2 —a)+ 2 28,,.,. oS apx sin fay,
masd M= ne=i
where A, and By, (m, n=0, 1, 2, 3, ...) are unknown coefficients, Substituting
in the relations (63.7), we obtain

ZBmﬁn COS amx cOS 8ay + ZBM CO5an X 4

e 1]
1A
+(F+‘n)¢——Mu=0, (63.17)
Z Amnm COS EmX COS Bay +2A°, cos 8.y +
mws] A= ye=i)

-+ Qn'# — Mg =0,

i‘, i (AmnBa+ B am) sint amx sin Bay + x iAM Ba sin 8ny 4+

Ml o= LEd

+3 Y Brogmsinanx+ pxy — 2’:.:4' —2M3=0,
m=1 (63.18)
In the given problem, the function V is an even function of the coordinates, There-
forethe left-handterms of (63.17) will be even functions of the coordinates, and the
left-hand member of (63.18) will be an odd function, i.e., the choice of functions ¢,
and {: accords with the properties of the functions ¢ and M;,. From (63.17) we
find for the Fourier coefficients the expressions:

Amnamab=
a b A
=ff(M:z — x11¢) COS @mXx COS By dxdy
e -e mn=1,23,...;
BnnBnab =
a b
. 4 A
= fj (Mu R T \'a) COS 3mX COS 3y dxdy
—a <%
a & A
2ab Agn = (Maz —x41 ¥) cos Bay dxdy
S
2ab By = mn=123,..
a b ‘ A
=ff(Mu % —xln'{ﬂ)cosamxdxdy
-5 (63.19)
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Multiplying (63,18} by sina.xsinfay and integrating, we find the relations between
the coefficients

0 (Ansbn -+ Bansn) - 26[ Apn B2 (- 17 By 2 (1)1 ]=

a &
S A
——fj (2x12% + 2 M2 - - pxy) sl amx sin oy dxdy

~a —b

(63. 20)

the Fourier coefficients of sinemx and sinf.v of the left-hand member of (63. 18)
vanish identically.

Eliminating the Fourier coefficients frora (63.19) and (63.20), we obtain

ffb{cos 10X COS ﬁny[f—: (M3 —Qn 4)_—%—%’: (Mu ——5— -~ unu #)]—f—

~a —b
A
+{pxy — 2x2¢ — 2 Miz}sinamx sin fay --

p A
— u—” (— 17 (Maz— % ) cosBay —
=8 (1M - LS ) o o) dxdy =0, (63.21)

This equation is, in effect, another form of th: third equilibrium equation of a cylin-
drical strip rigidly fastened at the edges, since by eliminating the functions ¢ and
4 from (63.7) we shall obtain the equilibrium: equation, At the same time, (63.21)
is the integrability condition for the equations {63, 7) with respect to the functions

& and .. It is important to note that with cur choice of the functions My and ¥
in the form (63. 3) and (63. 9), it is impossible to satisfy the third equation of equi-
librium directly as for that one would have to :xpand p in a cosine series, In (63, 21)
the pressure p is not expanded in series. Ancther advantage of (63. 21) consists in
the fact that My, and y are not differentiated twice, as is the case in the third equi-
librium equation.

Substituting for M and 2% from (63. 3) and (63.8) in (63. 21) and integrating,
we obtain

(e[ 4 Y e 4 2 Z(ﬁn a— + o “:") -

—40 = p ] el — (- D] +

174
a b
1 —
+ Dab j‘j Gompe Ydxdy =0,
—a ~b r,3=1 2 ..
(63.22)
where D is the flexural rigidity, and
Dmprs = — fu[(— 1ym+r (%"—)zcos a,x c0S Bay ps () Pm (X) 1
£ ]
+{— l)"*’(aul),cos X €3S Bsy Pa (¥) #r (X) —
o (63.23)

—2(~ 1)’*-"’—”’%I sinanx sl faysina,X sin Bxy];
s
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lm.—ff\locosamxcosﬂ.ydxdy, I,..-fffbcos anx dxdy;

—a —b —a —&

a‘l
ii[#cosﬁnyd.rdy. (63.24)

If one expands Pmss  in a double Fourier series, then the integral in (63.22) may
be written in the form

a &

Z Oy didy =+ 2 [( )fm{~ 1) o+

—a —& 7 gml, 2 3. ]

(Y e = O 1 (= 1y fn g1 S |+

+ 2 e (C (TR

S Rml 2,0
+ %:5)2/“]-{- L2l r {(ﬂ")l Wt (2 )/”,.]H.

1
+a‘b 2 {- 1)+ Sf,_; marsix fin -+ 2 [fr. Amars I -

oS T, k1,23, rosal, 2,

+ frur Broars 14 - (~1)m+'(”")fu/w(~ s (P /fu/mJ.

{63.25)
where we set
s =D ["’:"- I () -- (1 +—’?)/m (a)] :
=1y [ o, B
B = =1 [ lns,(b>~< &’)/m )].
FZ “2

Anrsiy = Liba et (@) Fash (8) = Tt (2) 7nsx (£) <—" + —") .

,v 2 a2 (63.26)

Now we shall calculate the integrals (63, 24), First we shall expand vy in a Fourier
double series.

Utilizing the formulas

@ (—-n” -
x =T+4 i;-cosamx, yi= +4 ——cosP.y
m

|

a
10~ 1) sh 2 82
j'Lk(x)COSumde=”(‘);ap:(i——'ﬁ.—) m=0129 .:
J (49 (ah +8)

b

40— 1) sh bay (P2 -- va
fM.(y)cosBudy: (- 7 sh ban (B - va} ) 2=0,1,2 ...,
heY u +”(le+“zh)2
we obtain
$= ¥ Crucosanxcosfuy,
moae0, 1, 2, .. " " " (63.27)
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where we set

6 Coo == P23+ p16%, Crom=Cyy +Zb(;'l‘__7'_ Br chpay,

u: 1+ Vb:i
Co= Cm«-*}-zp—'(;,llﬁ i —4i sh apa,
B T4 af,

= 4 (= D Ax(af - ) )

C‘._C“+—_——(l+v)(ai’+pi)’[ .‘———shaﬁa—r
(— DB, (# — vl

+———‘—(;—'*~)sht=nJ, (63.28)

Cu. » Cio » Cy are given by (63.15). Introducing (63,27 in (63. 24), we obtain

Imn==ab Crmn; In=2abCmy; 1." = 2ab Cya. (63.29)

Substituting these integrals in (63.25), and the latter in (63,22), we find the pressure
as a function of the deflection parameters.

29  Let us give the approximate solution of the problem.

The function

= 2 Cmn COS 2mX ¢ 03 Bny (63. 30)

m el 33 ..

exactly satisfies the boundary conditions g(}) =0 and satisfies in the mean tne condi-
tions ., (¢)=0. This function, however, cannot satisfy the compatibility conditions
exactly. Therefore, we shall satisfy it in the variational form

g A A A AR
fJ (K'AA‘!‘—1¥2+1u1n+%)51ldxdy=0, (83, 31)

~a -b

where the contour integral (24, 27) vanishes with '63. 30), as it equals

B a _ ‘1& il
11_2K'-{[gz(¢)5¢ kY ,l,.-.dl+ (63. 32)

Ly

]
+2x [Ta@mw—mw3¥] 7 o

S-—a

Substttuting for i‘,. from (63, 8) and for & from (63, 30) in (63, 31), we obtain

K (@8 Cone — & L CV2 DB, (63.33)
R B2 !
wherem,n=1,2,3, ..., D are given in texms of f_ by (63, 16).

We shall obtain another relation between C_ and f_  from (63.23) in the
form
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1

G b

(= imen[ (2 4 Y fun 2 Z(f..— + for —) -

ksl

—a(1- rvw] + e, 1
K

1 .
+a (= 17 frCirArmmrsar -

rOS A k=12, 3.,

4L =Y B\ (= 1F (3 \?
ks Z f,x[ - (e’) c.nlm,.(a)-,LT(;.) Cot Lok (D) +-

o8 k=4, 2 2.

el D (2, I (B ]

_NZ/,,f(Hx)mw(ﬁﬂ)cmH—-l)"“( ~Ye ] (63.34)

where I, and I}, are given by (63,17), Owing to these, considerable simplifi-
cations are possible here,
§ 64, Exact Series-Solution for a Strip Hinged at All Edges
10, The boundary conditions of hinged support
U=v=w=. T2 =0 (X =+ a); g=vawmil =0 (y=+0b)
2 - ayt -0

are, according to (24,52a) and (24,52c), equivalent to the boundary conditions in the
stresses and moments:

Mp)=0 RK g )=—D (1 + v)fMudy (x =+ a), (64.1)
L) =0 £ =0 (y=%)
My == M;z =0 {on the edges)

The constant of integration in the second of the conditions (64, 1) turns out to
be zero owing to the symmetry of the atrip. The boundary conditions for the mom-
ents and the Codazzi conditions are satisfied by the functions

()

M,,:l—l‘ men cusumxcos'ﬁn)’( : -+ g2 )

ginaprsinfay Bav
14 T anbs
where m,n=1,3,5,...; am == mr/2a, 3, = nx/2b. {64,2)
Hence for '\7_,,, we obtain the expressions:
x" =D f""' Na m =D EI'"-' cosanx cos Bay;
!n =0 fmn’ 5inamx SINBaY; Wma = D’ fiml/(dnpll)2
im e (64.3)

where wy,n are the deflection parameters,
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We shall seek the stress function in the form

$=9"+¢*"+ Dima €05 3mX €OS Bay;
m, n=l, 3,5
Dmn = — o - __me, N
KR G(am— ) (64.4)

where y* satisfies the homgeneous boundary corditions 4 ($*)=0, g1(4*) =0, (i=1,2)
and the compatibility conditions for the plate

Ay A
K AA§* =50 — xp i (64.5)

Y ** is a biharmonic function of the form

mw

4= 2 [fm (%) cOS Bmy + Fm (¥) cOSans], am="rr, Bn=")

ma=l

m=135..,
fa(x) = AnchBmx + Bmx th Bmx;
Fr(9)=Anchany+ Bny shamy,

satiafying the boundary conditions

2
b =0, g (§**) = Down 52088 = *20) 1054 co0s Bay

Im

L TR A

(x=+a),
B ($**)=0; ga(¥**) = L DBt

m, a==.. 3, 5...
4@+ v)Baallsingabcosans  (y=-+b). (64.6)

From the boundary condition #,(}**)=0 it fcllows that

fn(a@)+vBafm(a)="),

whence

A,,,=A—B,.n{a(ha$m+(T_ 2.

T

consequently,

4o = (Bl b(X) COS 3my + BanMn{y) cos 2mx],

L TR

(64.7)

where we have set

"
LA(x)=xsh mk —[a th8ma 4 m] ch fmx,

A 2
Mu(y)=ysh u,,,y——[b th aw-}-mnzlch Bmy. (64.8)

Introducing (64. 7) in the boundary conditions (64 6), we obtain

2{8;'. al (1 4+ v)sinama [chamy (bax tha b — 2) — amy shamy] +

m=1

+ B (1 = shbna — 217 B | 05 by} =

2 (g 2
= Doma M sir ama cos Gay,

Im

m, a=1.3, 5..
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from which, considering that

bchamy (amdth amd — 2) — bany shany =

ol 8in Bab ch agh ot By
(sm+ )

=4

A=l 4,5

we obtain for B} and B} the infinite system of linear equations

L, AL+ BasinBeb B, a3, sin aa,, chagh
By kg — e T =
M S LR Y
A sin az,, '?‘"2 : a(l+ v
= Dmn _iv"___"); hy=(3—v) Shﬂﬁn———”;
*m ch af,
m=l, 4, 5.
B, — 4{1 + M a,sinae 2 R, 8, s;n B,"b?ch"fi,,.,a _
‘ m=13% ... (antim ¥
ES
= 2 Do {";‘ +(24-9) ﬂm] sin 3mb;
a
me=1.3. 5. n
o a B(l 4
A, = (3 —v) shazp — ———1£&
n={ ) " ch b1, ’ (64.9)

where the second one is obtained by analogy to the first, and 1, and ), are known
coefficients,

For y* we shall take the function (63, 9) of the problem of the preceding sec-
tion. Introducing it in the compatibility conditions (24, 26a), we obtain

K’ 2 Crn (@2 + 2)? cosal,x cos By =
m, a0, 1,2 ...
€OS 0;X COs @, X €05 Py ¥ COs By
=)' 2 flllfrs [ * '2 z f= —
a, Be
7og L kel 3,5 ..
__sinxyxsina,xsinByysinfyy

aifaa s h] ’

where

a! =mnja, B.=nx/b, m, n=01,23,....

The right-hand member of the equation obtain has the form

D* Y DmacosaxcosBry, D=0

m, pem(, 1, 2 ...
Consequently,

K Cnn (a2 +82Y =D"0pa, m,n=0,1,2..., (64.10)

where the coefficients an are determined from the formulas

fr.m (@) It 4 (B Ly, (@) L, nmJ
[ 3By, Bs

abDpn = 2 fllf's[

£s i k=1, 3,5 (64.11)
(m,n=1,2,3..)%

— 1, () n (&)

2bD_ = , I.\'[ .rk.n_ ——‘“‘” ]
” Pl | “orer T Tapha,
r 5, k==l 3,5 ..
n=1223..;
= Is.m(@) Uy m(b)
* 7.5 kml, 3,5...



Here we have set

a8
Iu,m(a)=fcos 2—cos —chos s, rs=1,3,5..
a

mm==123,..;

Z, _(a)—fsin — sin —ccs T  dx.
(64,12)

Substituting for Cy,y from(64.10) in(63. 12), we shall find the coefficients A, and B, of

the function y*, Then the stress function y will be expressed in terms of the de-
flection parameters, Thus, for the exact fulfillment of the boundary conditions with
respect to y one has to solve two infinite systems of linear equations (63,12) and
(64.9).

We shall investigate the equilibrium equaticn. By making the following sub-
stitutions in the general solutions (63, 7)

h=—Lx (-4

+1_l,,z Z frn sin a,,x €os B, ¥ ( +pz>+1'l-

*m
m, o=t 35 ..

w=—Lyw—ay+
! 08 0y S0 By { v A
+l—v* Srn - “"'3:” * (;'T+HT)++2'
P o ) " "

(64,13)
and using the relations (64. 2), we obtain instead of (63. 7) the equation
o (64.14)
ah-}-(Rﬁ-x" G =0 :'+,11.",_0;
Smn (0% + B5) L Sinapx ingry
3 § PR
m. A=l 3, 5., mn
=My e Dursh — pxy, (64.15)

where ";1 are the new moment functions. Taking nto consideration the form of the
functions . and ¥, we may set

i
w, A AP
( +—‘n)¢ Zd () g (x); g = ‘:L‘.l;(:‘_)-gln(y), ®*
ksl
where N is some finite number, and the functions

(ﬂ. J.
82 (0, ot (y), 2, Ll

are even with respect to their arguments and inch de also the infinite series.

With these notations we obtain from (64. 14)
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N
hi=— Dot (08 (n+ £ %

b= = Bt (0900, (64.16)
A=l
where f and f, are arbitrary functions,
Introducing them in (64, 15), we obtain
N
Sy == Yot LD+ wt(n) B0 1+

=i

+ 2k — pxy + 10+ (2), (64.17)

where f(x, y) is the left-hand member of equation (64.15),
In order to clarify the nature of the functions f |(y) and f ,(x) we shall multiply
the above equality by sin «; x and then by sin f,y, wherer, s =1, 3, 5..., and in-

tegrate the results obtained over the surface of the strip, Taking into account the
properties of the functions «# and Q#, we find:

a 13
ff,' (D stnaxde =0, (£ (y)sindeydy=0,
—_ —&

i.e., the functions f}(x) and f{(y) are even with respect to their arguments. Further,
we set x = ta and y = b in (64.17). This yields

HNN+H@)=0. f()+1f'(b)=

whence
A+ () =—fi" (@) —fi' (B).
Integrating (64, 17) over the surface of the strip we have
@+ £ (9)=0.
Taking that into consideration, we obtain
[ N==fH(x)=C
where C is a constant,
Consequently, in (64, 17) the sum of the arbitrary functions is zero,

Now we shall multiply (64.17) by sin a.x sin 8,y and integrate over the surface
of the strip. Then, by virtue of orthogonality of the system of functions sin a x, we

obtain
f,;.;(zz)+a;):ab ’j. S 2[‘“ .x).xsz, D) 4 gy 12 do* lx)] +
—_— ﬂm

+ 2%1:4» - pxy} sinamx sin B ydxdy.

(64,18)
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Let us integrate by parts the terms containing m and @ . We have:

1]
[ sintn y—\—L’dy—sme.yQ*(y)l"‘ -

—b
—Sufcos Bay @t (y) ey,
=%
a . a dah( )
" ok { —_ : w5}
J @* (x)sin am Xdx nmjcoscmx e dx.
-z ]

Consequently,

a & N
{ a2ty
S 5 @ % (x) Ll sin anxcsin 3y dxdy =
dy
a b

1 ¢ A =8
= -Scos Gmx SIA 3y xn1p dx—
a

ap Y=
a b
_ﬁif S‘x“d{cos 2nX COSBay d'rdy
Im
—-a —b&

Here we have made us of the notations (*). Here, ':“ vanighes at the edges y= tb,

Analogously one can obtain:
N

“ b
s‘ fzm‘(}’) B2 G g stn 3.y dxdy =
a ~b

k=1
m=l

2
zg(l.%__fcosﬁny‘lﬂ(a.y) ty—

—_S j cos a,,.; cos 3ny( + l")‘l'd«‘d.l’»

after taking into account that Qn = 0 at the edges x = ta,

Utilizing the equations obtained, we shall rejresent (64, 18) in the form
min =1

fan( L+82)Yab 4= 2% p 2(—1)
foa( n+7a)'st =——— COS?r)'f(a Ndy+

Q—ad g —_:,i..ﬂ’ - BaR

+S 5 cosa”.xcos nv[ 1+--( +Az»>]+
+2msin amx sin Bny}n'gd:dy. (64.19)

Substituting for Q,-,, from (64, 3) in (64, 19), we obtaiin by integration

m+n
o BN (==’ 4_%," T =
e o 1
L=y alfm, 1 2
=1—-E-L—-+5 2 fn-[lrmr: (:2 +:’Tz>“‘
) (64.,20)
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where for the integrals we introduced the notations

a &
Tmnrs == f f\'a COS Gm X COS Ba ¥ COS 4,X cOS Psy dxdy,
-5 %
a [
I = § 510 amx sin Bx ¥ sin a.x sin Psy dxdy;
mnr:
=f
a & o
[ ==f fq» cosamxcosBaydxdy, 1= f‘v cos fa y(a, y) dy,
-a -b —b (64.21)

and y is given by (64.4).
Making use of the integral

4oy ch Boa - sinazg - ( o} — vpf“) ,

B (14 - (22 +05)2

S?.m (x) cosap xdx =

one may expand the function Lmx) in a series in cosines of half the argument

,[\‘ ) 4chaf, ap sin aay ((af -~ v ) coS gt
m{x) = — 2 .
()b Lo (2+8,)

A\
The function Mp{y) can be similarly expanded in terms of cos fxy. Then the stress

function y will be reduced to the form

¢=¢*+ ¥ ancosaxcospuy, (64.22)
LE=1 35 '
where
h—_—l
2
4 Ba(— 1) chbe; - (Bf ~s2) B
=D - [ i 7}
= Dn+ S o v +

i1
(= 1) 1 chafy - (=7 — V) 3;]
afy ’

+ (64.23)

and the function y* is given by the series (63.9). Introducing (64. 22) in the inte-

grals (64.21), we obtain
S [882Ce0 Lnr, w (@) + @B Cou Ins 6 (8)] +

Imnrs =
&k=1,2 3.
— A A
4+ ¥ Calmi(@)ax(b) + ¥ awlmn(@) e (b);
i km}, 2,3 i, kwml, 3, 5.
;o= % [68ssCao L. x(@) 4 @BmrCox Ins, v )]+

mnrs
k=123 ..
hY A
. — A hY
+ % Calmi@ )+ X aix frnri (@) Tnsa (),
i A=1,3,5.. (64.24)

ik=1,2.3...

3m, are the Kronecker deltas, Ty, are given by (63, 28),

ma

a b
[ =aban: + f fq,* €08 amx COS o y dxdy,

—a —b

355



and we have introduced the new integrals
m,;(a)—fcos ZZX cos —“ ‘cos —dx

A
inx
= = = ~05s — dx.
?mrl(d) _!sm o sin =¥ % 1% o

{64,25)
20, We shall give the approximate soluticn of the problem,
The function
me . [ﬂt
= Crmn COS8nX COS By, Om 2 Bn—% (64.26)

m, a=l, 35 ...

exactly satisfies the boundary conditions hj{y) = 0 and satisfies in the mean the
conditions

y
RK'gi(§)=—D' (1 +*Janav. g (§)=0.

The contour integral (24. 27) is expressed in the form

¢ ag ] [
=2 ([a@u—nw ]| 4+
13
+2 ([awu—go 2 u—ni]|”
-

With (64. 26), it vanishes.

In that case, in (64.20) one should substitute

A A
Inmrs== Y Cialma(@) Insa (b), 1 =0,
5oh==l, 3, 8.
A

A
Lyw= T Caluwi(@ha(t;, I, =abCa.
L A==l, 3,5 ...

Thereby the equilibrium equation will be exactly satisfied.

Integrating the compatibility conditions by the Bubnov-Galerkin method, we
obtain:

1 2 \2 D e
K (G Con— & 0. =

pll
3 s A
=2 f"f"(mm @ Tan(®) i (a) lin () )
ab a,B,38x B,%?

Fo8 1, keml, 3,05

(m,n=1,3,5,..),

where the integrals (64.25) have been introduced.
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§ 65. Freely-Supported Cylindrical Strip under
Uniform Compression or Elongation and External Normal Pressure

Let tne strip be freely supported at all edges and be under the action of an
uniform external pressure and contour forces T, = p; and T, = pp, in the absence
of the tangential stress T;,. The functions y and M;, satisfy the boundary conditiont

oy 9 _ _
o—y;—pl, @30, M= M:r=0 (for x==qa),

ﬂ‘=ﬂ:. i,1“-=0, My=Mpa2=0 (for y==b)

ax? dxdy (65.1)

We shall consider the function:

¢=%(P:X’+PU”)+ Cimn cOS ', x COS fn'y +

m, a=0,1,2 .

-+ Dmn COS GmX COS Bn y +

m, =135

-+ {AmFm (X) c0s By +BnF 2 () cos amx] 4

ma=1,2,3..

+ [CnEm(x)cosBl, ¥ + DmEl ( y)cos a) x|
P A

( a, =mz/a, ﬂ'm = mn/b;, em=mn/2a, Bn= m:/2b)_ (65.2)

Here D, and C_, are determined from (64. 4) and (84, 10) respectively and the
single sums are biharmonic functions. Consequently, (65.2) satisfies the com-
patibility conditions. The functions entering into that expression have the form

Enm(x)shap, =p,xshf x—chp e(1+ ap,, cthaf),
m=1,23,..

Fm(x)sh apl, = xshBmx chfna — a chfrxsh fna, (65.3)

and the functions E% (y) and F2 (y) are obtained from Ep, (x) and Fm(x) by replacing
sbyy, abyb, and bbya. Introducing (65. 2) in the boundary conditions (65.1) we
obtain for the determination of the coefficients A , B, C., Dp the infinite sys-
tem of linear equations

© mtk r-1
2 —_
4B Byag?(— 1 cthagh T
AnFl (8) — T’ (AR = Dimar (—D 7 5
k=i 3, 5 ... L R=1.3,5 ..
. mik R
Fo () o At (= 1) | cthapy Dorafe (—1 e
Baf [ (0) — =" (L +8) = e (—1) 7 (65.4)
-

A=l, 2.5 L INE



where m = 1, 3, 5, ...; Dy, are expressed in terms of the deflection parameters
(64.4)

Fl (a)=0.54aBn(shafn) 3 Fla)=0;

4 ‘-’)mw‘-.:’ﬂ.zl
— CkEk(d)-‘}‘: Dn ——————= = Cm!(" h

. p2)8
met, 2,5 (’"'" h) mue), 1, 2.3 .

- |ymikal
— DaES () + Z foRpaiyian g 2 Com(— 1Y%,

12,3 ( a;‘? + 3:); m=0, 1,21 ...

(65.5)

where k=1, 2,3,,.,; Cmn are expressed in te~ms of the deflection parameters
{64.10);

Ex(a)=a3,, —cthaf, (14 B, cth afy,).

In deriving (65.4) and (65.5) we made use of the f>rmulas:

k-l

daBn(~ 1" clnaf,

a

Frm{x)cos aexdx = — - m, k=135, ...
5” (aF + Ry
_: .
4(—1ppl
5Em(,t)cosan'dx=———(‘—).ﬂ—"_'— n, k=123, ..,
3 (e +82)

Introducing the stress function (65. 2) in (64. 21) and inserting the obtained ex-
pressions in (64, 20), we shall obtain a system of cubic equations in the parameters

fon -

In conclusion, let us note that the above method of solving non-linear boundary
problems is general and may be extended to the investigation of the stability of
shallow shells, rectangular in the plane. By usirg this method, one can extend the
domain of solved problems by expanding the requ:red functions in complete systems
of other special functions. The numerical evaluation of the exact solutions obtained
in series presents no difficulties of principle, bu* involves cumbersome computa-
tions, due to the necessity of solving a system of non-linear algebraic equations for
the required parameters. The successful overcoming of these difficulties requires
the use of computers. The solution of the same problems by the method of P. F.
Papkovich was given in article /XIV.1/.
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